tensorflow训练手写数字并识别手写数字的全过程代码

代码语言:html

所属分类:其他

代码描述:tensorflow训练手写数字并识别手写数字的全过程代码

代码标签: 数字 识别 手写 数字 全过程

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <style>
        #container {
            width: 300px;
            /*text-align: center;*/
            /*display: flex;*/
        }

        .canvas-container {}
        .button-container {
            display: flex;
            /*justify-content: center;*/
        }
        .btn {
            width: 140px;
        }
    </style>

</head>
<body>
    <div class="tfjs-example-container">
        <section class='title-area'>
            <h1>TensorFlow.js:手写数字识别</h1>
            <p class='subtitle'>
                使用tf.layers来训练MNIST手写数据并书别手写数据
                api.
            </p>
        </section>
        <section>
            <p class='section-head'>
                描述
            </p>
            <p>
                此示例允许您使用卷积神经网络(也称为ConvNet或CNN)或完全连接的神经网络(也称为DenseNet)来训练手写数字识别器。
                MNIST数据集用作训练数据。
            </p>
        </section>
        <section>
            <p class='section-head'>
                训练参数
            </p>
            <div>
                <label>Model Type:</label>
                <select id="model-type">
                    <option>Logistic</option>
                    <option>DenseNet</option>
                    <option>ConvNet</option>
                </select>
            </div>
            <div>
                <label># of training epochs:</label>
                <input id="train-epochs" value="3">
            </div>
            <button id="train">加载数据训练模型</button>
        </section>
        <section>
            <p class='section-head'>
                训练过程
            </p>
            <p id="status"></p>
            <p id="message"></p>
            <div id="stats">
                <div class="canvases">
                    <label id="loss-label"></label>
                    <div id="loss-canvas"></div>
                </div>
                <div class="canvases">
                    <label id="accuracy-label"></label>
                    <div id="accuracy-canvas"></div>
                </div>
            </div>
        </section>
        <section>
            <p class='section-head'>
                推理例子
            </p>
            <div id="images"></div>
        </section>
    </div>
  
    <script src='http://cdnjs.cloudflare.com/ajax/libs/fabric.js/1.4.0/fabric.min.js'></script>
    <script src='https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.13.3'></script>
    <script src='https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis'></script>
    <script>
      
        /**
        * @license
        * Copyright 2018 Google LLC. All Rights Reserved.
        * Licensed under the Apache License, Version 2.0 (the "License");
        * you may not use this file except in compliance with the License.
        * You may obtain a copy of the License at
        *
        * http://www.apache.org/licenses/LICENSE-2.0
        *
        * Unless required by applicable law or agreed to in writing, software
        * distributed under the License is distributed on an "AS IS" BASIS,
        * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        * See the License for the specific language governing permissions and
        * limitations under the License.
        * =============================================================================
        */

        const IMAGE_H = 28;
        const IMAGE_W = 28;
        const IMAGE_SIZE = IMAGE_H * IMAGE_W;
        const NUM_CLASSES = 10;
        const NUM_DATASET_ELEMENTS = 65000;

        const NUM_TRAIN_ELEMENTS = 55000;
        const NUM_TEST_ELEMENTS = NUM_DATASET_ELEMENTS - NUM_TRAIN_ELEMENTS;

        const MNIST_IMAGES_SPRITE_PATH =
        'https://storage.googleapis.com/learnjs-data/model-.........完整代码请登录后点击上方下载按钮下载查看

网友评论0