three+react实现三维彩色云海翻滚动画效果代码
代码语言:html
所属分类:动画
代码描述:three+react实现三维彩色云海翻滚动画效果代码
代码标签: three react 三维 彩色 云海 翻滚 动画
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html>
<html lang="en" >
<head>
<meta charset="UTF-8">
</head>
<body translate="no">
<script type="importmap">
{
"imports": {
"react": "https://cdn.skypack.dev/react@18.0.2",
"react-dom": "https://cdn.skypack.dev/react-dom@18.0.2",
"three": "https://cdn.skypack.dev/three@0.148.0",
"react-three/fiber": "https://cdn.skypack.dev/@react-three/fiber@7.0.24"
}
}
</script>
<style>
html, body{
margin: 0;
padding: 0;
width: 100%;
height: 100%;
border: 0;
}
.nt-embed{
width: 1024px;
height: 1024px;
}
.nt-embed canvas{
width: 100%;
height: 100%;
}
</style>
<script type="module">
import React, {useRef,useMemo} from 'react';
import ReactDOM from 'react-dom';
import * as THREE from 'three';
import {Canvas, useFrame, useThree} from 'react-three/fiber';
let embedRoot = document.createElement('div');
embedRoot.className = "nt-embed";
document.body.appendChild(embedRoot);
const TextureMesh = () => {
const mesh = useRef(null)
useFrame(state => {
const { clock, mouse, gl, scene, camera } = state
if(mesh.current){
mesh.current.material.uniforms.u_mouse.value = [mouse.x / 2 + 0.5, mouse.y / 2 + 0.5]
mesh.current.material.uniforms.u_time.value = clock.getElapsedTime()
let c = gl.domElement.getBoundingClientRect()
mesh.current.material.uniforms.u_resolution.value = [c.width,c.height]
}
})
return React.createElement('mesh',
{
ref:mesh,
position: [0,0,0],
scale: 26,
rotation: [-0.8,0,0]
},
React.createElement('planeGeometry',{args:[1,1,1024,1024]}),
React.createElement('shaderMaterial',{
fragmentShader: `// Fragment shader
// Uniforms
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform float u_intensity;
uniform vec4 u_colors[2];
uniform float u_speed;
uniform float u_scale;
varying vec2 vUv;
varying float vDisplacement;
#ifndef FNC_MOD289
#define FNC_MOD289
float mod289(const in float x) { return x - floor(x * (1. / 289.)) * 289.; }
vec2 mod289(const in vec2 x) { return x - floor(x * (1. / 289.)) * 289.; }
vec3 mod289(const in vec3 x) { return x - floor(x * (1. / 289.)) * 289.; }
vec4 mod289(const in vec4 x) { return x - floor(x * (1. / 289.)) * 289.; }
#endif
#ifndef FNC_PERMUTE
#define FNC_PERMUTE
float permute(const in float x) { return mod289(((x * 34.0) + 1.0) * x); }
vec2 permute(const in vec2 x) { return mod289(((x * 34.0) + 1.0) * x); }
vec3 permute(const in vec3 x) { return mod289(((x * 34.0) + 1.0) * x); }
vec4 permute(const in vec4 x) { return mod289(((x * 34.0) + 1.0) * x); }
#endif
#ifndef FNC_TAYLORINVSQRT
#define FNC_TAYLORINVSQRT
float taylorInvSqrt(in float r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec2 taylorInvSqrt(in vec2 r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec3 taylorInvSqrt(in vec3 r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec4 taylorInvSqrt(in vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; }
#endif
#ifndef FNC_QUINTIC
#define FNC_QUINTIC
float quintic(const in float v) { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec2 quintic(const in vec2 v) { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec3 quintic(const in vec3 v) { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec4 quintic(const in vec4 v) { return v*v*v*(v*(v*6.0-15.0)+10.0); }
#endif
#ifndef FNC_PNOISE
#define FNC_PNOISE
float pnoise(in vec2 P, in vec2 rep) {
vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, rep.xyxy);
Pi = mod289(Pi);
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
vec4 gy = abs(gx) - 0.5 ;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = quintic(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
float pnoise(in vec3 P, in vec3 rep) {
vec3 Pi0 = mod(floor(P), rep);
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep);
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P);
vec3 Pf1 = Pf0 - vec3(1.0);
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = quintic(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
float pnoise(in vec4 P, in vec4 rep) {
vec4 Pi0 = mod(floor(P), rep);
vec4 Pi1 = mod(Pi0 + 1.0, rep);
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec4 Pf0 = fract(P);
vec4 Pf1 = Pf0 - 1.0;
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = vec4(Pi0.zzzz);
vec4 iz1 = vec4(Pi1.zzzz);
vec4 iw0 = vec4(Pi0.wwww);
vec4 iw1 = vec4(Pi1.wwww);
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 ixy00 = permute(ixy0 + iw0);
vec4 ixy01 = permute(ixy0 + iw1);
vec4 ixy10 = permute(ixy1 + iw0);
vec4 ixy11 = permute(ixy1 + iw1);
vec4 gx00 = ixy00 * (1.0 / 7.0);
vec4 gy00 = f.........完整代码请登录后点击上方下载按钮下载查看
















网友评论0