three+react实现三维彩色云海翻滚动画效果代码

代码语言:html

所属分类:动画

代码描述:three+react实现三维彩色云海翻滚动画效果代码

代码标签: three react 三维 彩色 云海 翻滚 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>
  <meta charset="UTF-8">
  

  
</head>

<body translate="no">
  <script type="importmap">
{
    "imports": {
        "react": "https://cdn.skypack.dev/react@18.0.2",
        "react-dom": "https://cdn.skypack.dev/react-dom@18.0.2",
        "three": "https://cdn.skypack.dev/three@0.148.0",
        "react-three/fiber": "https://cdn.skypack.dev/@react-three/fiber@7.0.24"
    }
}
</script>
<style>
    html, body{
        margin: 0;
        padding: 0;
        width: 100%;
        height: 100%;
        border: 0;
    }
    .nt-embed{
        width: 1024px;
        height: 1024px;
    }
    .nt-embed canvas{
        width: 100%;
        height: 100%;
    }
</style>
<script type="module">
    import React, {useRef,useMemo} from 'react';
    import ReactDOM from 'react-dom';
    import * as THREE from 'three';
    import {Canvas, useFrame, useThree} from 'react-three/fiber';

    let embedRoot = document.createElement('div');
    embedRoot.className = "nt-embed";
    document.body.appendChild(embedRoot);

    const TextureMesh = () => {
        const mesh = useRef(null)
        useFrame(state => {
            const { clock, mouse, gl, scene, camera } = state
            if(mesh.current){
                mesh.current.material.uniforms.u_mouse.value = [mouse.x / 2 + 0.5, mouse.y / 2 + 0.5]
                mesh.current.material.uniforms.u_time.value = clock.getElapsedTime()
                let c = gl.domElement.getBoundingClientRect()
                mesh.current.material.uniforms.u_resolution.value = [c.width,c.height]
            }
        })
        
        return React.createElement('mesh',
            {
                ref:mesh,
                position: [0,0,0],
                scale: 26,
                rotation: [-0.8,0,0]
            },
            React.createElement('planeGeometry',{args:[1,1,1024,1024]}), 
            React.createElement('shaderMaterial',{
                fragmentShader: `// Fragment shader



// Uniforms

uniform vec2 u_resolution;

uniform vec2 u_mouse;

uniform float u_time;

uniform float u_intensity;

uniform vec4 u_colors[2];

uniform float u_speed;

uniform float u_scale;



varying vec2 vUv;

varying float vDisplacement;







#ifndef FNC_MOD289
#define FNC_MOD289

float mod289(const in float x) { return x - floor(x * (1. / 289.)) * 289.; }
vec2 mod289(const in vec2 x) { return x - floor(x * (1. / 289.)) * 289.; }
vec3 mod289(const in vec3 x) { return x - floor(x * (1. / 289.)) * 289.; }
vec4 mod289(const in vec4 x) { return x - floor(x * (1. / 289.)) * 289.; }

#endif





#ifndef FNC_PERMUTE
#define FNC_PERMUTE

float permute(const in float x) { return mod289(((x * 34.0) + 1.0) * x); }
vec2 permute(const in vec2 x) { return mod289(((x * 34.0) + 1.0) * x); }
vec3 permute(const in vec3 x) { return mod289(((x * 34.0) + 1.0) * x); }
vec4 permute(const in vec4 x) { return mod289(((x * 34.0) + 1.0) * x); }

#endif



#ifndef FNC_TAYLORINVSQRT
#define FNC_TAYLORINVSQRT
float taylorInvSqrt(in float r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec2 taylorInvSqrt(in vec2 r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec3 taylorInvSqrt(in vec3 r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec4 taylorInvSqrt(in vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; }
#endif


#ifndef FNC_QUINTIC
#define FNC_QUINTIC 

float quintic(const in float v) { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec2  quintic(const in vec2 v)  { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec3  quintic(const in vec3 v)  { return v*v*v*(v*(v*6.0-15.0)+10.0); }
vec4  quintic(const in vec4 v)  { return v*v*v*(v*(v*6.0-15.0)+10.0); }

#endif



#ifndef FNC_PNOISE
#define FNC_PNOISE

float pnoise(in vec2 P, in vec2 rep) {
    vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
    vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
    Pi = mod(Pi, rep.xyxy); 
    Pi = mod289(Pi);        
    vec4 ix = Pi.xzxz;
    vec4 iy = Pi.yyww;
    vec4 fx = Pf.xzxz;
    vec4 fy = Pf.yyww;

    vec4 i = permute(permute(ix) + iy);

    vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
    vec4 gy = abs(gx) - 0.5 ;
    vec4 tx = floor(gx + 0.5);
    gx = gx - tx;

    vec2 g00 = vec2(gx.x,gy.x);
    vec2 g10 = vec2(gx.y,gy.y);
    vec2 g01 = vec2(gx.z,gy.z);
    vec2 g11 = vec2(gx.w,gy.w);

    vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
    g00 *= norm.x;
    g01 *= norm.y;
    g10 *= norm.z;
    g11 *= norm.w;

    float n00 = dot(g00, vec2(fx.x, fy.x));
    float n10 = dot(g10, vec2(fx.y, fy.y));
    float n01 = dot(g01, vec2(fx.z, fy.z));
    float n11 = dot(g11, vec2(fx.w, fy.w));

    vec2 fade_xy = quintic(Pf.xy);
    vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
    float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
    return 2.3 * n_xy;
}

float pnoise(in vec3 P, in vec3 rep) {
    vec3 Pi0 = mod(floor(P), rep); 
    vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); 
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); 
    vec3 Pf1 = Pf0 - vec3(1.0); 
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);

    vec3 fade_xyz = quintic(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
    return 2.2 * n_xyz;
}

float pnoise(in vec4 P, in vec4 rep) {
    vec4 Pi0 = mod(floor(P), rep); 
    vec4 Pi1 = mod(Pi0 + 1.0, rep); 
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec4 Pf0 = fract(P); 
    vec4 Pf1 = Pf0 - 1.0; 
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = vec4(Pi0.zzzz);
    vec4 iz1 = vec4(Pi1.zzzz);
    vec4 iw0 = vec4(Pi0.wwww);
    vec4 iw1 = vec4(Pi1.wwww);

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);
    vec4 ixy00 = permute(ixy0 + iw0);
    vec4 ixy01 = permute(ixy0 + iw1);
    vec4 ixy10 = permute(ixy1 + iw0);
    vec4 ixy11 = permute(ixy1 + iw1);

    vec4 gx00 = ixy00 * (1.0 / 7.0);
    vec4 gy00 = f.........完整代码请登录后点击上方下载按钮下载查看

网友评论0