爱的火焰
代码语言:html
所属分类:表白
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title> - Love</title> <style> body, html { margin: 0; } canvas { display: block; } </style> </head> <body translate="no"> <canvas id="canvas"></canvas> <script> /* * A fast javascript implementation of simplex noise by Jonas Wagner * * Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. * Which is based on example code by Stefan Gustavson (stegu@itn.liu.se). * With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). * Better rank ordering method by Stefan Gustavson in 2012. * * * Copyright (C) 2016 Jonas Wagner * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ (function() { 'use strict'; var F2 = 0.5 * (Math.sqrt(3.0) - 1.0); var G2 = (3.0 - Math.sqrt(3.0)) / 6.0; var F3 = 1.0 / 3.0; var G3 = 1.0 / 6.0; var F4 = (Math.sqrt(5.0) - 1.0) / 4.0; var G4 = (5.0 - Math.sqrt(5.0)) / 20.0; function SimplexNoise(random) { if (!random) random = Math.random; this.p = buildPermutationTable(random); this.perm = new Uint8Array(512); this.permMod12 = new Uint8Array(512); for (var i = 0; i < 512; i++) { this.perm[i] = this.p[i & 255]; this.permMod12[i] = this.perm[i] % 12; } } SimplexNoise.prototype = { grad3: new Float32Array([1, 1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, 1, 0, 1, -1, 0, 1, 1, 0, -1, -1, 0, -1, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0, -1, -1]), grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1, 1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0]), noise2D: function(xin, yin) { var permMod12 = this.permMod12; var perm = this.perm; var grad3 = this.grad3; var n0 = 0; // Noise contributions from the three corners var n1 = 0; var n2 = 0; // Skew the input space to determine which simplex cell we're in var s = (xin + yin) * F2; // Hairy factor for 2D var i = Math.floor(xin + s); var j = Math.floor(yin + s); var t = (i + j) * G2; var X0 = i - t; // Unskew the cell origin back to (x,y) space var Y0 = j - t; var x0 = xin - X0; // The x,y distances from the cell origin var y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords var y1 = y0 - j1 + G2; var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords var y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners var ii = i & 255; var jj = j & 255; // Calculate the contribution from the three corners var t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 >= 0) { var gi0 = permMod12[ii + perm[jj]] * 3; t0 *= t0; n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient } var t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 >= 0) { var gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3; t1 *= t1; n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1); } var t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 >= 0) { var gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3; t2 *= t2; n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); }, // 3D simplex noise noise3D: function(xin, yin, zin) { var permMod12 = this.permMod12; var perm = this.perm; var grad3 = this.grad3; var n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D var i = Math.floor(xin + s); var j = Math.floor(yin + s); var k = Math.floor(zin + s); var t = (i + j + k) * G3; var X0 = i - t; // Unskew the cell origin back to (x,y,z) space var Y0 = j - t; var Z0 = k - t; var x0 = xin - X0; // The x,y,z distances from the cell origin var y0 = yin - Y0; var z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords var y1 = y0 - j1 + G3; var z1 = z0 - k1 + G3; var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords var y2 = y0 - j2 + 2.0 * G3; var z2 = z0 - k2 + 2.0 * G3; var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords var y3 = y0 - 1.0 + 3.0 * G3; var z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners var ii = i & 255; var jj = j & 255; var kk = k & 255; // Calculate the contribution from the four corners var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 &l.........完整代码请登录后点击上方下载按钮下载查看
网友评论0