多彩飓风旋涡状彩带灯带变幻canvas特效动
代码语言:html
所属分类:其他
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!D<<<YPEOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0,user-scalable=no,minimal-ui"> <title>多彩飓风旋涡状彩带灯带变幻canvas特效动画</title> <style > body { margin:0; } canvas { position: fixed; } </style> </head> <body> <canvas id="webgl" width="500" height="1758"></canvas> <script id="vertexShader" type="x-shader/x-vertex"> attribute vec4 a_position; uniform mat4 u_modelViewMatrix; uniform mat4 u_projectionMatrix; void main() { gl_Position = a_position; } </script> <script id="fragmentShader" type="x-shader/x-fragment"> precision highp float; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform sampler2D u_noise; uniform sampler2D u_buffer; uniform bool u_bufferpass; #define PI 3.14159265359 #define TAU 6.28318530718 // These awesome complex Math functions curtesy of // https://github.com/mkovacs/reim/blob/master/reim.glsl vec2 cCis(float r); vec2 cLog(vec2 c); // principal value vec2 cInv(vec2 c); float cArg(vec2 c); float cAbs(vec2 c); vec2 cMul(vec2 a, vec2 b); vec2 cDiv(vec2 a, vec2 b); vec2 cCis(float r) { return vec2( cos(r), sin(r) ); } vec2 cExp(vec2 c) { return exp(c.x) * cCis(c.y); } vec2 cConj(vec2 c) { return vec2(c.x, -c.y); } vec2 cInv(vec2 c) { return cConj(c) / dot(c, c); } vec2 cLog(vec2 c) { return vec2( log( cAbs(c) ), cArg(c) ); } float cArg(vec2 c) { return atan(c.y, c.x); } float cAbs(vec2 c) { return length(c); } vec2 cMul(vec2 a, vec2 b) { return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x); } vec2 cDiv(vec2 a, vec2 b) { return cMul(a, cInv(b)); } float r1 = 0.1; float r2 = 0.3; vec2 Droste(vec2 uv) { // r1 = .1 + u_mouse.x; r2 = .15 + max(u_mouse.y + .5, -.0); // float c = cos(u_time); // float s = sin(u_time); // uv *= mat2(c, -s, s, c); // 5. Take the tiled strips back to ordinary space. uv = cLog(uv); // 4. Scale and rotate the strips float scale = log(r2/r1); float angle = atan(scale/PI); uv = cDiv(uv, cExp(vec2(0,angle))*cos(angle)); // 3. this simulates zooming in the tile // uv -= u_time; // 2. Tile the strips uv.x = mod(uv.x,log(r2/r1)); // 1. Take the annulus to a strip uv = cExp(uv)*r1; return uv; } vec3 hash3( vec2 p ) { vec3 q = vec3( dot(p,vec2(127.1,311.7)), dot(p,vec2(269.5,183.3)), dot(p,vec2(419.2,371.9)) ); return fract(sin(q)*43758.5453); } vec2 getScreenSpace() { vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x); return uv; } const float colours = 3.; const vec4 colour1 = vec4(.1,.2,.8, 1.); const vec4 colour2 = vec4(.8,.3,.2, 1.); const vec4 colour3 = vec4(.1,.7,.2, 1.); vec4 getColour(float r) { float or = r; r = floor(r*(colours+1.)); if(r == 0.) { return colour1; } else if(r == 1.) { return colour2+vec4(0, (sin(u_time*3. + or*10.) * or + or), 0., 0.); } else if(r == 2.) { return colour3; } } vec4 render(vec2 uv) { // uv *= 10.; // uv.x += u_time; float row = floor(uv.y); if(mod(row, 2.) == 0.) return vec4(0,0,0,1); vec4 rowval = texture2D(u_noise, vec2(.5, row/110.)); float nf = rowval.r; nf *= nf; nf *= 5.; uv.x += u_time * nf * 3.; float noiseloopval = sin(uv.x*PI*.1)*floor(uv.y); noiseloopval = mod(uv.x*row, row*2.); vec2 uvid = floor(vec2( floor(noiseloopval), uv.y )); vec3 uvseed = hash3(uvid/PI); float shapefield = sin(fract(uv.y)*3.) * sin(fract(uv.x)*10.); vec4 colour = getColour(rowval.g*(1.-rowval.g*(sin(u_time*3.)*.5+.5))) * smoothstep(.2,.6,shapefield); colour += smoothstep(.9,1.,shapefield); colour += smoothstep(.99,1.,shapefield)*5.; // colour *= uvseed.x; return mix(vec4(0,0,0,1), colour, colour.a); } vec4 render_effect(vec2 uv, vec4 prev) { vec2 polar = vec2(atan(uv.x, uv.y)/PI, length(uv)); vec4 c = render(polar); c += render(polar * vec2(2., .6) + vec2(0.,1./.6)); c += render(polar * vec2(1., 1.2) + vec2(0.,1./1.2)); uv = Droste(getScreenSpace())*20.; polar = vec2(atan(uv.x, uv.y)/PI, length(uv)); c += render(polar * vec2(1., 2.2) + vec2(0.,2./2.2)); return c; } void main() { vec4 prev = texture2D(u_buffer, gl_FragCoord.xy/u_resolution); if(u_bufferpass) { vec2 uv = Droste(getScreenSpace())*10.; // uv = mix(uv, getScreenSpace()*10., sin(u_time*2.)*.5+.5); // uv = getScreenSpace()*10.; gl_FragColor = prev * .94 + render_effect(uv, prev) * .05; } else { vec2 uv = Droste(getScreenSpace())*50.; gl_FragColor = prev; } } </script> <!-- partial --> <script > /** * A basic Web GL class. This provides a very basic setup for GLSL shader code. * Currently it doesn't support anything except for clip-space 3d, but this was * done so that we could start writing fragments right out of the gate. My * Intention is to update it with particle and polygonal 3d support later on. * * @class WTCGL * @author Liam Egan <liam@wethecollective.com> * @version 0.0.8 * @created Jan 16, 2019 */ class WTCGL { /** * The WTCGL Class constructor. If construction of the webGL context fails * for any reason this will return null. * * @TODO make the dimension properties properly optional * @TODO provide the ability to allow for programmable buffers * * @constructor * @param {HTMLElement} el The canvas element to use as the root * @param {string} vertexShaderSource The vertex shader source * @param {string} fragmentShaderSource The fragment shader source * @param {number} [width] The width of the webGL context. This will default to the canvas dimensions * @param {number} [height] The height of the webGL context. This will default to the canvas dimensions * @param {number} [pxratio=1] The pixel aspect ratio of the canvas * @param {boolean} [styleElement] A boolean indicating whether to apply a style property to the canvas (resizing the canvas by the inverse of the pixel ratio) * @param {boolean} [webgl2] A boolean indicating whether to try to create a webgl2 context instead of a regulart context */ constructor(el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, styleElement, webgl2) { this.run = this.run.bind(this); this._onRun = () => {}; // Destructure if an object is aprovided instead a series of parameters if (el instanceof Object && el.el) { ({ el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, webgl2, styleElement } = el); } // If the HTML element isn't a canvas, return null if (!el instanceof HTMLElement || el.nodeName.toLowerCase() !== 'canvas') { console.log('Provided element should be a canvas element'); return null; } this._el = el; // The context should be either webgl2, webgl or experimental-webgl if (webgl2 === true) { this.isWebgl2 = true; this._ctx = this._el.getContext("webgl2", this.webgl_params) || this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params); } else { this.isWebgl2 = false; this._ctx = this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params); } // Set up the extensions this._ctx.getExtension('OES_standard_derivatives'); this._ctx.getExtension('EXT_shader_texture_lod'); this._ctx.getExtension('OES_texture_float'); this._ctx.getExtension('WEBGL_color_buffer_float'); this._ctx.getExtension('OES_texture_float_linear'); this._ctx.getExtension('EXT_color_buffer_float'); // We can't make the context so return an error if (!this._ctx) { console.log('Browser doesn\'t support WebGL '); return null; } // Create the shaders this._vertexShader = WTCGL.createShaderOfType(this._ctx, this._ctx.VERTEX_SHADER, vertexShaderSource); this._fragmentShader = WTCGL.createShaderOfType(this._ctx, this._ctx.FRAGMENT_SHADER, fragmentShaderSource); // Create the program and link the shaders this._program = this._ctx.createProgram(); this._ctx.attachShader(this._program, this._vertexShader); this._ctx.attachShader(this._program, this._fragmentShader); this._ctx.linkProgram(this._program); // If we can't set up the params, this means the shaders have failed for some reason if (!this._ctx.getProgramParameter(this._program, this._ctx.LINK_STATUS)) { console.log('Unable to initialize the shader program: ' + this._ctx.getProgramInfoLog(this._program)); return null; } // Initialise the vertex buffers this.initBuffers([ -1.0, 1.0, -1., 1.0, 1.0, -1., -1.0, -1.0, -1., 1.0, -1.0, -1.]); // Initialise the frame buffers this.frameBuffers = []; // The program information object. This is essentially a state machine for the webGL instance this._programInfo = { attribs: { vertexPosition: this._ctx.getAttribLocation(this._program, 'a_position') }, uniforms: { projectionMatrix: this._ctx.getUniformLocation(this._program, 'u_projectionMatrix'), modelViewMatrix: this._ctx.getUniformLocation(this._program, 'u_modelViewMatrix'), resolution: this._ctx.getUniformLocation(this._program, 'u_resolution'), time: this._ctx.getUniformLocation(this._program, 'u_time') } }; // Tell WebGL to use our program when drawing this._ctx.useProgram(this._program); this.pxratio = pxratio; this.styleElement = styleElement !== true; this.resize(width, height); } /** * Public methods */ addFrameBuffer(w, h, tiling = 0, buffertype = 0) { // create to render to const gl = this._ctx; const targetTextureWidth = w * this.pxratio; const targetTextureHeight = h * this.pxratio; const targetTexture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, targetTexture); { // define size and format of level 0 const level = 0; let internalFormat = gl.RGBA; const border = 0; let format = gl.RGBA; let t; if (buffertype & WTCGL.TEXTYPE_FLOAT) { const e = gl.getExtension('OES_texture_float'); window.extension = e; t = e.FLOAT; // internalFormat = gl.RGBA32F; } else if (buffertype & WTCGL.TEXTYPE_HALF_FLOAT_OES) { // t = gl.renderer.isWebgl2 ? e.HALF_FLOAT : e.HALF_FLOAT_OES; // gl.renderer.extensions['OES_texture_half_float'] ? gl.renderer.extensions['OES_texture_half_float'].HALF_FLOAT_OES : // gl.UNSIGNED_BYTE; const e = gl.getExtension('OES_texture_half_float'); t = this.isWebgl2 ? gl.HALF_FLOAT : e.HALF_FLOAT_OES; // format = gl.RGBA; // internalFormat = gl.RGB32F; // format = gl.RGB32F; // window.gl = gl // t = e.HALF_FLOAT_OES; } else { t = gl.UNSIGNED_BYTE; } const type = t; const data = null; gl.texImage2D(gl.TEXTURE_2D, level, internalFormat, targetTextureWidth, targetTextureHeight, border, format, type, data); // gl.generateMipmap(gl.TEXTURE_2D); // set the filtering so we don't need mips gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); // Set the parameters based on the passed type if (tiling === WTCGL.IMAGETYPE_TILE) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT); } else if (tiling === WTCGL.IMAGETYPE_MIRROR) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.MIRRORED_REPEAT); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.MIRRORED_REPEAT); } else if (tiling === WTCGL.IMAGETYPE_REGULAR) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); } } // Create and bind the framebuffer const fb = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fb); // attach the texture as the first color attachment const attachmentPoint = gl.COLOR_ATTACHMENT0; const level = 0; gl.framebufferTexture2D(gl.FRAMEBUFFER, attachmentPoint, gl.TEXTURE_2D, targetTexture, level); return { w: w * this.pxratio, h: h * this.pxratio, fb: fb, frameTexture: targetTexture }; } /** * Resizes the canvas to a specified width and height, respecting the pixel ratio * * @param {number} w The width of the canvas * @param {number} h The height of the canvas * @return {Void} */ resize(w, h) { this._el.width = w * this.pxratio; this._el.height = h * this.pxratio; this._size = [w * this.pxratio, h * this.pxratio]; if (this.styleElement) { this._el.style.width = w + 'px'; this._el.style.height = h + 'px'; } this._ctx.viewportWidth = w * this.pxratio; this._ctx.viewportHeight = h * this.pxratio; this._ctx.uniform2fv(this._programInfo.uniforms.resolution, this._size); this.initBuffers(this._positions); } /** * Initialise a provided vertex buffer * * @param {array} positions The vertex positions to initialise * @return {Void} */ initBuffers(positions) { this._positions = positions; this._positionBuffer = this._ctx.createBuffer(); this._ctx.bindBuffer(this._ctx.ARRAY_BUFFER, this._positionBuffer); this._ctx.bufferData(this._ctx.ARRAY_BUFFER, new Float32Array(positions), this._ctx.STATIC_DRAW); } /** * Add a uniform to the program. At this time the following types are supported: * - Float - WTCGL.TYPE_FLOAT * - Vector 2 - WTCGL.TYPE_V2 * - Vector 3 - WTCGL.TYPE_V3 * - Vector 4 - WTCGL.TYPE_V4 * * @param {string} name The name of the uniform. N.B. your name will be prepended with a `u_` in your shaders. So providing a name of `foo` here will result in a uniform named `u_foo` * @param {WTCGL.UNIFORM_TYPE} type The unfiform type * @param {number|array} value The unfiform value. The type depends on the uniform type being created * @return {WebGLUniformLocation} The uniform location for later reference */ addUniform(name, type, value) { let uniform = this._programInfo.uniforms[name]; uniform = this._ctx.getUniformLocation(this._program, `u_${name}`); switch (type) { case WTCGL.TYPE_INT: if (!isNaN(value)) this._ctx.uniform1i(uniform, value); break; case WTCGL.TYPE_FLOAT: if (!isNaN(value)) this._ctx.uniform1f(uniform, value); break; case WTCGL.TYPE_V2: if (value instanceof Array && value.length === 2.) this._ctx.uniform2fv(uniform, value); break; case WTCGL.TYPE_V3: if (value instanceof Array && value.length === 3.) this._ctx.uniform3fv(uniform, value); break; case WTCGL.TYPE_V4: if (value instanceof Array && value.length === 4.) this._ctx.uniform4fv(uniform, value); break; case WTCGL.TYPE_BOOL: if (!isNaN(value)) this._ctx.uniform1i(uniform, value); break;} this._programInfo.uniforms[name] = uniform; return uniform; } /** * Adds a texture to the program and links it to a named uniform. Providing the type changes the tiling properties of the texture. Possible values for type: * - WTCGL.IMAGETYPE_REGULAR - No .........完整代码请登录后点击上方下载按钮下载查看
网友评论0