tensorflow数据训练拟合的全过程
代码语言:html
所属分类:其他
代码描述:tensorflow数据训练拟合的全过程
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> </head> <body translate="no"> <div style="width:800px;"> <canvas id="myChart" width="800" height="800"></canvas> </div> <button onclick="train()">训练模型一次</button> <script type="text/javascript" src="http://repo.bfw.wiki/bfwrepo/js/tf.min.js"></script> <script type="text/javascript" src="http://repo.bfw.wiki/bfwrepo/js/chart.js"></script> <script> const trainX = [ 3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1 ]; const trainY = [ 1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3 ]; const m = tf.variable(tf.scalar(Math.random())); const b = tf.variable(tf.scalar(Math.random())); function predict(x) { return tf.tidy(function() { return m.mul(x).add(b); }); } function loss(prediction, labels) { //subtracts the two arrays & squares each element of the tensor then finds the mean. const error = prediction .sub(labels) .square() .mean(); return error; } function train() { const learningRate = 0.005; const optimizer = tf.train.sgd(learningRate); optimizer.minimize(function() { const predsYs = predict(tf.tensor1d(trainX)); console.log(predsYs); stepLoss = loss(predsYs, .........完整代码请登录后点击上方下载按钮下载查看
网友评论0