three打造三维能量球效果代码
代码语言:html
所属分类:三维
代码描述:three打造三维能量球效果代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <style> body { margin:0; } canvas { position: fixed; } </style> </head> <body > <canvas id="webgl" width="500" height="1758"></canvas> <script id="vertexShader" type="x-shader/x-vertex"> attribute vec4 a_position; uniform mat4 u_modelViewMatrix; uniform mat4 u_projectionMatrix; void main() { gl_Position = a_position; } </script> <script id="fragmentShader" type="x-shader/x-fragment"> precision highp float; precision highp int; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform sampler2D u_noise; // movement variables vec3 movement = vec3(.0); uniform int u_maxIterations; uniform float u_stopThreshold; uniform float u_stepScale; uniform float u_eps; uniform int u_octaves; uniform vec3 u_clipBGColour; uniform vec3 u_blobColour; uniform vec3 u_light_position; uniform vec3 u_lightColour; uniform float u_lightStrength; uniform float u_sceneWeight; uniform float u_internalStep; const int maxIterations = 1024; const vec3 light1_position = vec3(0, 1., -1.); const vec3 light1_colour = vec3(.5, .8, 1.85); const int octaves = 3; const int max_octaves = 16; struct Surface { int object_id; float distance; vec3 position; vec3 colour; float ambient; float spec; }; float bumps(in vec3 p, float phase, float size, vec3 frequency) { return size * sin(p.x * frequency.x + phase) * cos(p.y * frequency.y + phase) * cos(p.z * frequency.z + phase); } float fractalBumps(in vec3 p, float phase, float size, vec3 frequency, float multiplier) { // const float octaves = 2.; float _bumps = 0.; for(int i = 1; i < max_octaves; i++) { if(i > u_octaves) break; float f = float(i); _bumps += bumps(p, phase + f * 10., size * multiplier * 1./f, frequency * f); } return _bumps; } // This function describes the world in distances from any given 3 dimensional point in space float world(in vec3 position, inout int object_id) { vec3 pos = floor(position * .5); object_id = int(floor(pos.x + pos.y + pos.z)); // position = mod(position, 1.) - .5; float gradient = max(0., (position.y + .3)); float bumps = fractalBumps(position, u_time * 2., .5 * gradient, vec3(10. + sin(u_time) * 5.), 2.8); float world = length(position) - .4 + bumps * .15; // world = max(world, -position.y); return world; } float world(in vec3 position) { int dummy = 0; return world(position, dummy); } Surface getSurface(int object_id, float rayDepth, vec3 sp) { return Surface( object_id, rayDepth, sp, vec3(1.), .5, 200.); } // The raymarch loop Surface rayMarch(vec3 ro, vec3 rd, float start, float end, inout vec3 col) { float sceneDist = 1e4; float rayDepth = start; int object_id = 0; // Light position vec3 lp = ro + vec3(2, 2, -5.); bool hit = false; for(int i = 0; i < maxIterations; i++) { if(i > u_maxIterations) break; vec3 r = ro + rd * rayDepth; sceneDist = world(r, object_id); vec3 normal = normalize(r); vec3 ld = lp - r; float len = length( ld ); ld = normalize(ld); float diffuse = max(0., dot(normal, ld))+.2; float weighting = length(r); col += clamp((1./abs(sceneDist)*u_sceneWeight)*weighting*(diffuse*.005*u_blobColour)*(u_lightColour*u_lightStrength), 0.0, 1.); if(sceneDist < u_stopThreshold) { rayDepth += u_internalStep; } else { rayDepth += sceneDist * u_stepScale; } if(rayDepth > end) { break; } } col = sqrt(col); return getSurface(object_id, rayDepth, ro + rd * rayDepth); } void main() { vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x); // Camera and look-at vec3 cam = vec3(cos(u_mouse.x * 5.)*3.,u_mouse.y * 3.,sin(u_mouse.x * 5.)*3.); vec3 lookAt = vec3(0,0,0); // Unit vectors vec3 forward = normalize(lookAt - cam); vec3 right = normalize(vec3(forward.z, 0., -forward.x)); vec3 up = normalize(cross(forward, right)); // FOV float FOV = .4; // Ray origin and ray direction vec3 ro = cam; vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up); // Ray marching const float clipNear = 0.; const float clipFar = 32.; vec3 col = u_clipBGColour; Surface objectSurface = rayMarch(ro, rd, clipNear, clipFar, col); gl_FragColor = vec4(col, 1.); } </script> <script type="module"> /** * A basic Web GL class. This provides a very basic setup for GLSL shader code. * Currently it doesn't support anything except for clip-space 3d, but this was * done so that we could start writing fragments right out of the gate. My * Intention is to update it with particle and polygonal 3d support later on. * * @class WTCGL * @author Liam Egan <liam@wethecollective.com> * @version 0.0.8 * @created Jan 16, 2019 */ class WTCGL { /** * The WTCGL Class constructor. If construction of the webGL context fails * for any reason this will return null. * * @TODO make the dimension properties properly optional * @TODO provide the ability to allow for programmable buffers * * @constructor * @param {HTMLElement} el The canvas element to use as the root * @param {string} vertexShaderSource The vertex shader source * @param {string} fragmentShaderSource The fragment shader source * @param {number} [width] The width of the webGL context. This will default to the canvas dimensions * @param {number} [height] The height of the webGL context. This will default to the canvas dimensions * @param {number} [pxratio=1] The pixel aspect ratio of the canvas * @param {boolean} [styleElement] A boolean indicating whether to apply a style property to the canvas (resizing the canvas by the inverse of the pixel ratio) * @param {boolean} [webgl2] A boolean indicating whether to try to create a webgl2 context instead of a regulart context */ constructor(el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, styleElement, webgl2) { this.run = this.run.bind(this); this._onRun = () => {}; // Destructure if an object is aprovided instead a series of parameters if (el instanceof Object && el.el) { ({ el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, webgl2, styleElement } = el); } // If the HTML element isn't a canvas, return null if (!el instanceof HTMLElement || el.nodeName.toLowerCase() !== 'canvas') { console.log('Provided element should be a canvas element'); return null; } this._el = el; // The context should be either webgl2, webgl or experimental-webgl if (webgl2 === true) { this.isWebgl2 = true; this._ctx = this._el.getContext("webgl2", this.webgl_params) || this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params); } else { this.isWebgl2 = false; this._ctx = this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params); } // Set up the extensions this._ctx.getExtension('OES_standard_derivatives'); this._ctx.getExtension('EXT_shader_texture_lod'); this._ctx.getExtension('OES_texture_float'); this._ctx.getExtension('WEBGL_color_buffer_float'); this._ctx.getExtension('OES_texture_float_linear'); this._ctx.getExtension('EXT_color_buffer_float'); // We can't make the context so return an error if (!this._ctx) { console.log('Browser doesn\'t support WebGL '); return null; } // Create the shaders this._vertexShader = WTCGL.createShaderOfType(this._ctx, this._ctx.VERTEX_SHADER, vertexShaderSource); this._fragmentShader = WTCGL.createShaderOfType(this._ctx, this._ctx.FRAGMENT_SHADER, fragmentShaderSource); // Create the program and link the shaders this._program = this._ctx.createProgram(); this._ctx.attachShader(this._program, this._vertexShader); this._ctx.attachShader(this._program, this._fragmentShader); this._ctx.linkProgram(this._program); // If we can't set up the params, this means the shaders have failed for some reason if (!this._ctx.getProgramParameter(this._program, this._ctx.LINK_STATUS)) { console.log('Unable to initialize the shader program: ' + this._ctx.getProgramInfoLog(this._program)); return null; } // Initialise the vertex buffers this.initBuffers([ -1.0, 1.0, -1., 1.0, 1.0, -1., -1.0, -1.0, -1., 1.0, -1.0, -1.]); // Initialise the frame buffers this.frameBuffers = []; // The program information object. This is essentially a state machine for the webGL instance this._programInfo = { attribs: { vertexPosition: this._ctx.getAttribLocation(this._program, 'a_position') }, uniforms: { projectionMatrix: this._ctx.getUniformLocation(this._program, 'u_projectionMatrix'), modelViewMatrix: this._ctx.getUniformLocation(this._program, 'u_modelViewMatrix'), resolution: this._ctx.getUniformLocation(this._program, 'u_resolution'), time: this._ctx.getUniformLocation(this._program, 'u_time') } }; // Tell WebGL to use our program when drawing this._ctx.useProgram(this._program); this.pxratio = pxratio; this.styleElement = styleElement !== true; this.resize(width, height); } /** * Public methods */ addFrameBuffer(w, h, tiling = 0, buffertype = 0) { // create to render to const gl = this._ctx; const targetTextureWidth = w * this.pxratio; const targetTextureHeight = h * this.pxratio; const targetTexture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, targetTexture); { // define size and format of level 0 const level = 0; let internalFormat = gl.RGBA; const border = 0; let format = gl.RGBA; let t; if (buffertype & WTCGL.TEXTYPE_FLOAT) { const e = gl.getExtension('OES_texture_float'); window.extension = e; t = e.FLOAT; // internalFormat = gl.RGBA32F; } else if (buffertype & WTCGL.TEXTYPE_HALF_FLOAT_OES) { // t = gl.renderer.isWebgl2 ? e.HALF_FLOAT : e.HALF_FLOAT_OES; // gl.renderer.extensions['OES_texture_half_float'] ? gl.renderer.extensions['OES_texture_half_float'].HALF_FLOAT_OES : // gl.UNSIGNED_BYTE; const e = gl.getExtension('OES_texture_half_float'); t = this.isWebgl2 ? gl.HALF_FLOAT : e.HALF_FLOAT_OES; // format = gl.RGBA; if (this.isWebgl2) { internalFormat = gl.RGBA16F; } // internalFormat = gl.RGB32F; // format = gl.RGB32F; // window.gl = gl // t = e.HALF_FLOAT_OES; } else { t = gl.UNSIGNED_BYTE; } const type = t; const data = null; gl.texImage2D(gl.TEXTURE_2D, level, internalFormat, targetTextureWidth, targetTextureHeight, border, format, type, data); // gl.generateMipmap(gl.TEXTURE_2D); // set the filtering so we don't need mips gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); // Set the parameters based on the passed type if (tiling === WTCGL.IMAGETYPE_TILE) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT); } else if (tiling === WTCGL.IMAGETYPE_MIRROR) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.MIRRORED_REPEAT); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.MIRRORED_REPEAT); } else if (tiling === WTCGL.IMAGETYPE_REGULAR) { gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); } } // Create and bind the framebuffer const fb = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fb); // attach the texture as the first color attachment const attachmentPoint = gl.COLOR_ATTACHMENT0; const level = 0; gl.framebufferTexture2D(gl.FRAMEBUFFER, attachmentPoint, gl.TEXTURE_2D, targetTexture, level); return { w: w * this.pxratio, h: h * this.pxratio, fb: fb, frameTexture: targetTexture }; } /** * Resizes the canvas to a specified width and height, respecting the pixel ratio * * @param {number} w The width of the canvas * @param {number} h The height of the canvas * @return {Void} */ resize(w, h) { this.width = w; this.height = h; this._el.width = w * this.pxratio; this._el.height = h * this.pxratio; this._size = [w * this.pxratio, h * this.pxratio]; if (this.styleElement) { this._el.style.width = w + 'px'; this._el.style.height = h + 'px'; } this._ctx.viewportWidth = w * this.pxratio; this._ctx.viewportHeight = h * this.pxratio; this._ctx.uniform2fv(this._programInfo.uniforms.resolution, this._size); this.initBuffers(this._positions); } /** * Initialise a provided vertex buffer * * @param {array} positions The vertex positions to initialise * @return {Void} */ initBuffers(positions) { this._positions = positions; this._positionBuffer = this._ctx.createBuffer(); this._ctx.bindBuffer(this._ctx.ARRAY_BUFFER, this._positionBuffer); this._ctx.bufferData(this._ctx.ARRAY_BUFFER, new Float32Array(positions), this._ctx.STATIC_DRAW); } /** * Add a uniform to the program. At this time the following types are supported: * - Float - WTCGL.TYPE_FLOAT * - Vector 2 - WTCGL.TYPE_V2 * - Vector 3 - WTCGL.TYPE_V3 * - Vector 4 - WTCGL.TYPE_V4 * * @param {string} name The name of the uniform. N.B. your name will be prepended with a `u_` in your shaders. So providing a name of `foo` here will result in a uniform named `u_foo` * @param {WTCGL.UNIFORM_TYPE} type The unfiform type * @param {number|array} value The unfiform value. The type depends on the uniform type being created * @return {WebGLUniformLocation} The uniform location for later reference */ addUniform(name, type, value) { let uniform = this._programInfo.uniforms[name]; uniform = this._ctx.getUniformLocation(this._program, `u_${name}`); switch (type) { case WTCGL.TYPE_INT: if (!isNaN(value)) this._ctx.uniform1i(uniform, value); break; case WTCGL.TYPE_FLOAT: if (!isNaN(value)) this._ctx.uniform1f(uniform, value); break; case WTCGL.TYPE_V2: if (value instanceof Array && value.length === 2.) this._ctx.uniform2fv(uniform, value); break; case WTCGL.TYPE_V3: if (value instanceof Array && value.length === 3.) this._ctx.uniform3fv(uniform, value); break; case WTCGL.TYPE_V4: if (value instanceof Array && value.length === 4.) this._ctx.uniform4fv(uniform, value); break; case WTCGL.TYPE_BOOL: if (!isNaN(value)) this._ctx.uniform1i(uniform, value); break;} this._programInfo.uniforms[name] = uniform; return uniform; } /** * Adds a texture to the program and links it to a named uniform. Providing the type changes the tiling properties of the texture. Possible values for type: * - WTCGL.IMAGETYPE_REGULAR - No tiling, clamp to edges and doesn't need to be power of 2. * - WTCGL.IMAGETYPE_TILE - full x and y tiling, needs to be power of 2. * - WTCGL.IMAGETYPE_MIRROR - mirror tiling, needs to be power of 2. * * @public * @param {string} name The name of the uniform. N.B. your name will be prepended with a `u_` in your shaders. So providing a name of `foo` here will result in a uniform named `u_foo` * @param {WTCGL.TYPE_IMAGETYPE} type The type of texture to create. This is basically the tiling behaviour of the texture as described above * @param {Image} image The image object to add to the texture * @return {WebGLTexture} The texture object */ addTexture(name, type, image, liveUpdate = false) { var texture = this._ctx.createTexture(); this._ctx.pixelSto.........完整代码请登录后点击上方下载按钮下载查看
网友评论0