webgl实现canvas漂浮小球随波逐流动画效果代码

代码语言:html

所属分类:粒子

代码描述:webgl实现canvas漂浮小球随波逐流动画效果代码

代码标签: 漂浮 小球 随波逐流 动画 效果

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<html lang="en"><head>

 
<meta charset="UTF-8">
 

 
 
 
<style>
body
{
 
background: #666;
 
margin: 0;
 
overflow: hidden;
}
canvas
{
 
height: 100vh;
 
width: 100vw;
 
touch-action: none;
}
.osc {
 
left: 0px;
 
position: fixed;
 
top: 0px;
}

.button {
 
position: fixed;
 
z-index: 10;
 
right: 0;
 
bottom: 0;
}
.controls {
 
position: fixed;
 
z-index: 10;
 
left: 0;
 
bottom: 0;
}
.playpause {
 
background: #AAB;
 
padding: 10px;
}
.playpause label {
 
display: block;
 
box-sizing: border-box;

 
width: 0;
 
height: 20px;

 
cursor: pointer;

 
border-color: transparent transparent transparent #202020;
 
transition: 100ms all ease;
 
will-change: border-width;

 
border-style: double;
 
border-width: 0px 0 0px 20px;
}
.playpause input[type='checkbox'] {
 
visibility: hidden;
}
.playpause.checked label {
 
border-style: double;
 
border-width: 0px 0 0px 20px;
}
.playpause label {
 
border-style: solid;
 
border-width: 10px 0 10px 20px;
}
/* } */
</style>




</head>

<body >
 
<script id="vertexShader_particle" type="x-shader/x-vertex">
  attribute vec4 a_position
;
  attribute vec3 a_colour
;
  attribute vec2 a_reference
;
 
  uniform vec2 u_resolution
;
 
  uniform sampler2D b_velocity
;
  uniform sampler2D b_position
;
 
  varying vec3 v_colour
;
  varying
float v_fogDepth;
 
  vec3 palette
( in float t, in vec3 a, in vec3 b, in vec3 c, in vec3 d ) {
   
return a + b*cos( 6.28318*(c*t+d) );
 
}
 
 
float rand(vec2 n) {
   
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
 
}
 
  vec3 hsv2rgb
(vec3 c) {
    vec4 K
= vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
    vec3 p
= abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
   
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
 
}
 
 
void main() {
    vec2 position
= texture2D(b_position, a_reference).xy;
    vec2 velocity
= texture2D(b_velocity, a_reference).xy;
   
float l = length(velocity);
   
    vec4 pos
= vec4(position / u_resolution * 2. - 1., 0., 1.);
   
    gl_Position
= pos;
    gl_PointSize
= 15.;
    v_colour
= palette(
      length
(a_reference)-l*.2,
      vec3
(.6),
      vec3
(.6),
      vec3
(1.0,1.0,1.+l*.3),
      vec3
(0.5,0.20,0.25)
   
);
 
}
</script>
<script id="vertexShader_buffer" type="x-shader/x-vertex">attribute vec4 a_position;  
  uniform mat4 u_modelViewMatrix
;
  uniform mat4 u_projectionMatrix
;
 
 
void main() {
    gl_Position
= a_position;
 
}
</script>
<script id="fragmentShader_velocity" type="x-shader/x-fragment">
 
#extension GL_OES_standard_derivatives : enable
  precision highp
float;
 
 
#define PI 3.141592653589793
 
#define HPI 1.5707963267948966
 
#define TAU 6.283185307179586
 
#define G 0.67408
 
  uniform vec2 u_resolution
;
  uniform vec2 u_mouse
;
  uniform
float u_time;
  uniform sampler2D s_noise
;
 
  uniform sampler2D b_velocity
;
  uniform sampler2D b_position
;
 
 
//    Simplex 3D Noise
 
//    by Ian McEwan, Ashima Arts
 
//
  vec4 permute
(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
  vec4 taylorInvSqrt
(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
 
 
float rand(float n){return fract(sin(n) * 43758.5453123);}
 
float rand(vec2 n) {
   
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
 
}
 
float snoise(vec3 v){
   
const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
   
const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

 
// First corner
    vec3 i  
= floor(v + dot(v, C.yyy) );
    vec3 x0
=   v - i + dot(i, C.xxx) ;

 
// Other corners
    vec3 g
= step(x0.yzx, x0.xyz);
    vec3 l
= 1.0 - g;
    vec3 i1
= min( g.xyz, l.zxy );
    vec3 i2
= max( g.xyz, l.zxy );

   
//  x0 = x0 - 0. + 0.0 * C
    vec3 x1
= x0 - i1 + 1.0 * C.xxx;
    vec3 x2
= x0 - i2 + 2.0 * C.xxx;
    vec3 x3
= x0 - 1. + 3.0 * C.xxx;

 
// Permutations
    i
= mod(i, 289.0 );
    vec4 p
= permute( permute( permute(
               i
.z + vec4(0.0, i1.z, i2.z, 1.0 ))
             
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
             
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

 
// Gradients
 
// ( N*N points uniformly over a square, mapped onto an octahedron.)
   
float n_ = 1.0/7.0; // N=7
    vec3  ns
= n_ * D.wyz - D.xzx;

    vec4 j
= p - 49.0 * floor(p * ns.z *ns.z);  //  mod(p,N*N)

    vec4 x_
= floor(j * ns.z);
    vec4 y_
= floor(j - 7.0 * x_ );    // mod(j,N)

    vec4 x
= x_ *ns.x + ns.yyyy;
    vec4 y
= y_ *ns.x + ns.yyyy;
    vec4 h
= 1.0 - abs(x) - abs(y);

    vec4 b0
= vec4( x.xy, y.xy );
    vec4 b1
= vec4( x.zw, y.zw );

    vec4 s0
= floor(b0)*2.0 + 1.0;
    vec4 s1
= floor(b1)*2.0 + 1.0;
    vec4 sh
= -step(h, vec4(0.0));

    vec4 a0
= b0.xzyw + s0.xzyw*sh.xxyy ;
    vec4 a1
= b1.xzyw + s1.xzyw*sh.zzww ;

    vec3 p0
= vec3(a0.xy,h.x);
    vec3 p1
= vec3(a0.zw,h.y);
    vec3 p2
= vec3(a1.xy,h.z);
    vec3 p3
= vec3(a1.zw,h.w);

 
//Normalise gradients
    vec4 norm
= taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
    p0
*= norm.x;
    p1
*= norm.y;
    p2
*= norm.z;
    p3
*= norm.w;

 
// Mix final noise value
    vec4 m
= max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
    m
= m * m;
   
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                  dot
(p2,x2), dot(p3,x3) ) );
 
}
 
 
float noise21(vec2 n) {
   
const vec2 d = vec2(0.0, 1.0);
    vec2 b
= floor(n), f = smoothstep(vec2(0.0), vec2(1.0), fract(n));
   
return mix(mix(rand(b), rand(b + d.yx), f.x), mix(rand(b + d.xy), rand(b + d.yy), f.x), f.y);
 
}
 
 
void main() {
    vec2 uv
= gl_FragCoord.xy / u_resolution.xy;
    vec2 position
= texture2D(b_position, uv).xy;
    vec2 velocity
= texture2D(b_velocity, uv).xy;
   
   
float a = snoise(vec3(position*.002, u_time - floor(u_time*5.) * 20.)) * (3.14159 * 2.) + noise21(position)*5.;
   
   
float c = cos(a);
   
float s = sin(a);
   
    velocity
= velocity * .99 + vec2(c, s) * .1;
   
   
if(length(velocity) > 2.) velocity = normalize(velocity)*2.;
   
    gl_FragColor
= vec4(velocity, 0., 1.0);
 
}
</script>
<script id="fragmentShader_position" type="x-shader/x-fragment">
 
#extension GL_OES_standard_derivatives : enable
  precision highp
float;
 
  uniform vec2 u_resolution
;
  uniform vec2 u_mouse
;
  uniform
float u_time;
  uniform sampler2D s_noise
;
  uniform vec2 u_screen
;
 
  uniform sampler2D b_velocity
;
  uniform sampler2D b_position
;

 
void main() {
    vec2 uv
= gl_FragCoord.xy / u_resolution.xy;
    vec2 position
= texture2D(b_position, uv).xy;
    vec2 velocity
= texture2D(b_velocity, uv).xy;
   
    vec2 pos
= position+velocity*.99;
   
if(pos.x > u_screen.x + 20.) pos.x = -10.;
   
else if(pos.x < -20.) pos.x = u_screen.x + 10.;
   
if(pos.y > u_screen.y + 20.) pos.y = -10.;
   
else if(pos.y < -20.) pos.y = u_screen.y + 10.;
   
    gl_FragColor
= vec4(pos, 0., 1.0);
 
}
</script>
<script id="fragmentShader_particle" type="x-shader/x-fragment">
 
#extension GL_OES_standard_derivatives : enable
  precision highp
float;
 
  uniform vec2 u_resolution
;
  uniform vec2 u_mouse
;
  uniform
float u_time;
  uniform sampler2D s_noise
;
 
  uniform sampler2D b_prime
;
  uniform sampler2D b_position
;
 
  varying vec3 v_colour
;
  varying
float v_fogDepth;
 
 
const vec3 oneVector = vec3(1.0, 1.0, 1.0);
 
const vec3 lightPosition = vec3(-.5, -.5, 2.);
 
  vec2 getScreenSpace
() {
    vec2 uv
= (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
   
   
return uv;
 
}

 
void main() {
    vec2 uv
= gl_PointCoord.xy - .5;
    vec2 s
= gl_FragCoord.xy / u_resolution.xy;
   
    gl_FragColor
= vec4(0, 0, 0, 1);
   
   
float l = length(uv);
   
float opacity = smoothstep(.5, 0.45, l);
   
if(opacity < .1) discard;
   
   
float normalizedDepth = sqrt(1.0 - l * l);
   
   
// Current depth
   
float depthOfFragment = 0.5 * normalizedDepth;
   
//        float currentDepthValue = normalizedViewCoordinate.z - depthOfFragment - 0.0025;
   
float currentDepthValue = (1. - depthOfFragment - 0.0025);

   
// Calculate the lighting normal for the sphere
    vec3 normal
= normalize(vec3(uv, normalizedDepth));

    vec3 finalSphereColor
= v_colour;
   
   
// vec3 ref = reflect(vec3(0,0,-1), normal);
    vec3 ref
= reflect(normalize(lightPosition), normal);
   
   
float amb = clamp( 0.5+0.5*normal.y, 0.0, 1.0 );
   
float dif = clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 );
   
float bac = clamp( dot( normal, normalize(vec3(-lightPosition.x,0.0,-lightPosition.z))), 0.0, 1.0 )*clamp( 1.0-uv.y,0.0,1.0);
   
//float dom = smoothstep( -0.1, 0.1, ref.y );
   
// float fre = pow( clamp(1.0+dot(nor,cam.rd),0.0,1.0), 2.0 );
   
float spe = pow(clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 ),32.0);
   
    vec3 lin
= vec3(0.0);
    lin
+= 1.*dif*vec3(.95,0.80,0.60);
   
// lin += 1.20*spe*vec3(1.00,0.85,0.55)*dif;
   
// lin += 0.80*amb*vec3(0.50,0.70,.80);
   
//lin += 0.30*dom*vec3(0.50,0.70,1.00)*occ;
    lin
+= 0.30*bac*vec3(0.25,0.25,0.25);
    lin
+= .30*spe*vec3(1.00,0.85,0.55)*dif;
   

   
// ambient
//     float lightingIntensity = 0.3 + 0.7 * clamp(dot(lightPosition, normal), 0.0, 1.0);
//     finalSphereColor *= lightingIntensity;

//     // Per fragment specular lighting
//     lightingIntensity  = clamp(dot(lightPosition, normal), 0.0, 1.0);
//     // lightingIntensity  = pow(lightingIntensity, 10.0);
//     finalSphereColor += vec3(0.4, 0.4, 0.4) * lightingIntensity*lightingIntensity;
   
    finalSphereColor
*= lin;
   
    gl_FragColor
= vec4(finalSphereColor, opacity);
 
}
 
</script>

 
     
<script  type="module">
function _defineProperty(obj, key, value) {if (key in obj) {Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true });} else {obj[key] = value;}return obj;}function _classPrivateFieldSet(receiver, privateMap, value) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to set private field on non-instance");}if (descriptor.set) {descriptor.set.call(receiver, value);} else {if (!descriptor.writable) {throw new TypeError("attempted to set read only private field");}descriptor.value = value;}return value;}function _classPrivateFieldGet(receiver, privateMap) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to get private field on non-instance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}function _classStaticPrivateFieldSpecGet(receiver, classConstructor, descriptor) {if (receiver !== classConstructor) {throw new TypeError("Private static access of wrong provenance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}import { Vec2, Vec3, Mat2, Mat3, Mat4, Quat } from 'https://cdn.skypack.dev/wtc-math';

import gifJs from 'https://cdn.skypack.dev/gif.js';

console.clear();

const setup = function () {
  // Simulation dimensions
  const px = Math.min(window.devicePixelRatio, 2);
  const dimensions = [window.innerWidth, window.innerHeight];
  const texturesize = 256;
  const particles = Math.pow(texturesize, 2);
  const textureArraySize = particles * 4;

  const canvas = document.createElement('canvas');
  document.body.appendChild(canvas);

  const renderer = new Renderer(canvas, { width: dimensions[0], height: dimensions[1], alpha: false, premultipliedAlpha: false, preserveDrawingBuffer: true });
  const ctx = renderer.ctx;

  let drawing = new Float32Array([-1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0]);
  const ants = new Float32Array(particles * 2).fill(0);
  const references = new Float32Array(particles * 2).fill(0);
  const positionData = new Float32Array(particles * 4).fill(0);
  const velocityData = new Float32Array(particles * 4).fill(0);
  for (let i = 0; i < ants.length; i += 2) {
    const index = i / 2;
    const tindex = i * 2;

    ants[i] = index % texturesize; // x position
    ants[i + 1] = Math.floor(index / texturesize); // y position

    references[i] = ants[i] / texturesize; // x position of the texture particle representing this ant
    references[i + 1] = ants[i + 1] / texturesize; // y position of the texture particle representing this ant

    positionData[tindex] = Math.random() * (window.innerWidth * px + 40);
    positionData[tindex + 1] = Math.random() * (window.innerHeight * px + 40);
    positionData[tindex + 2] = 0;
    positionData[tindex + 3] = 1;

    velocityData[tindex] = Math.random() - .5;
    velocityData[tindex + 1] = Math.random() - .5;
    velocityData[tindex + 2] = 0;
    velocityData[tindex + 3] = 1;
  }
  // for (let i = 0; i < textureArraySize; i += 4) {
  //   positionData[i] = Math.random();
  //   positionData[i + 1] = Math.random();
  //   positionData[i + 2] = 0;
  //   positionData[i + 3] = 1;
  // }

  const positionBuffer = new FrameBuffer(renderer, 'position', {
    width: texturesize,
    height: texturesize,
    tiling: Texture.IMAGETYPE_TILE,
    texdepth: FrameBuffer.TEXTYPE_FLOAT,
    pxRatio: 1,
    data: positionData });

  const velocityBuffer = new FrameBuffer(renderer, 'velocity', {
    width: texturesize,
    height: texturesize,
    tiling: Texture.IMAGETYPE_TILE,
    texdepth: FrameBuffer.TEXTYPE_FLOAT,
    pxRatio: 1,
    data: velocityData });


  const drawBuffer = new Buffer(ctx, drawing);
  const antBuffer = new Buffer(ctx, ants, {
    attributes: [{
      name: 'ants',
      numComponents: 2 }] });


  const referenceBuffer = new Buffer(ctx, references, {
    attributes: [{
      name: 'reference',
      numComponents: 2 }] });



  const vertexShader_buffer = document.getElementById('vertexShader_buffer').innerText;
  const vertexShader_particle = document.getElementById('vertexShader_particle').innerText;

  const programPosition = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_position').innerText, {
    renderType: Program.RENDER_STRIP });
  const programVelocity = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_velocity').innerText, {
    renderType: Program.RENDER_STRIP });
  const programMain = new Program(ctx, vertexShader_particle, document.getElementById('fragmentShader_particle').innerText, {
    // clearColour: [.15,.1,.05, 1.],
    clearColour: [.98, .95, .98, 1.],
    renderType: Program.RENDER_POINTS,
    blending: Renderer.BLENDING_NORMAL,
    depthTesting: false,
    transparent: true,
    premultiplied: false });


  const time = new Uniform(ctx, 'time', Uniform.TYPE_FLOAT, 100);
  const uDelta = new Uniform(ctx, 'delta', Uniform.TYPE_FLOAT, 100);
  const mouse = new Uniform(ctx, 'mouse', Uniform.TYPE_V2, [0., 0.]);
  const screen = new Uniform(ctx, 'screen', Uniform.TYPE_V2, [window.innerWidth * px, window.innerHeight * px]);

  const noise = new Texture(ctx, 'noise', {
    textureType: Texture.IMAGETYPE_TILE,
    url: 'https://assets.codepen.io/982762/noise.png' });


  noise.preload().then(n => {
    requestAnimationFrame(run);
  });

  let pointerdown = false;
  let lastPos = new Vec2();
  window.addEventListener('pointerdown', e => {
    pointerdown = true;
    lastPos = new Vec2(e.x, e.y);
  });
  window.addEventListener('pointerup', e => {
    pointerdown = false;
  });
  window.addEventListener('pointermove', e => {
    if (pointerdown) {
      let newPos = new Vec2(e.x, e.y);
      mouse.value = newPos.array;
    }
  });

  let playing = true;
  const setPlaying = value => {
    playing = value;
  };

  let autoTransitionTimer = 0;
  let timeToTransition = 0;
  const setupValues = i => {
    dimensions[0] = window.innerWidth;
    dimensions[1] = window.innerHeight;

    time.value = -10000;
  };

  setupValues(0);

  let timeout;
  window.addEventListener('resize', () => {
    clearTimeout(timeout);
    timeout = setTimeout(() => {
      dimensions[0] = window.innerWidth;
      dimensions[1] = window.innerHeight;
      renderer.resize(dimensions[0], dimensions[1]);
      screen.value = [dimensions[0] * px, dimensions[1] * px];
    }, 100);
  });

  let then = 0;
  const run = delta => {

    let now = Date.now() / 1000;
    let _delta = now - then;
    then = now;

    if (_delta > 1000) {
      requestAnimationFrame(run);
      return;
    }

    if (playing) {
      uDelta.value = Math.min(_delta, 0.5);
      time.value += _delta * .05;

      renderer.setViewport([velocityBuffer.width, velocityBuffer.height]);
      // window.renderer = renderer;
      // console.log(renderer.uniformResolution.value)
      renderer.setupProgram(programVelocity, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]);
      velocityBuffer.render(4);

      renderer.setupProgram(programPosition, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]);
      positionBuffer.render(4);

      renderer.setViewport();
      renderer.setupProgram(programMain, [referenceBuffer], [], [time, mouse, velocityBuffer, positionBuffer, screen]);
      renderer.render(particles);

      requestAnimationFrame(run);
    }
  };
};

// Determine whether a number is a power of 2
function powe.........完整代码请登录后点击上方下载按钮下载查看

网友评论0