webgl实现canvas漂浮小球随波逐流动画效果代码
代码语言:html
所属分类:粒子
代码描述:webgl实现canvas漂浮小球随波逐流动画效果代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<html lang="en"><head> <meta charset="UTF-8"> <style> body { background: #666; margin: 0; overflow: hidden; } canvas { height: 100vh; width: 100vw; touch-action: none; } .osc { left: 0px; position: fixed; top: 0px; } .button { position: fixed; z-index: 10; right: 0; bottom: 0; } .controls { position: fixed; z-index: 10; left: 0; bottom: 0; } .playpause { background: #AAB; padding: 10px; } .playpause label { display: block; box-sizing: border-box; width: 0; height: 20px; cursor: pointer; border-color: transparent transparent transparent #202020; transition: 100ms all ease; will-change: border-width; border-style: double; border-width: 0px 0 0px 20px; } .playpause input[type='checkbox'] { visibility: hidden; } .playpause.checked label { border-style: double; border-width: 0px 0 0px 20px; } .playpause label { border-style: solid; border-width: 10px 0 10px 20px; } /* } */ </style> </head> <body > <script id="vertexShader_particle" type="x-shader/x-vertex"> attribute vec4 a_position; attribute vec3 a_colour; attribute vec2 a_reference; uniform vec2 u_resolution; uniform sampler2D b_velocity; uniform sampler2D b_position; varying vec3 v_colour; varying float v_fogDepth; vec3 palette( in float t, in vec3 a, in vec3 b, in vec3 c, in vec3 d ) { return a + b*cos( 6.28318*(c*t+d) ); } float rand(vec2 n) { return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453); } vec3 hsv2rgb(vec3 c) { vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www); return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); } void main() { vec2 position = texture2D(b_position, a_reference).xy; vec2 velocity = texture2D(b_velocity, a_reference).xy; float l = length(velocity); vec4 pos = vec4(position / u_resolution * 2. - 1., 0., 1.); gl_Position = pos; gl_PointSize = 15.; v_colour = palette( length(a_reference)-l*.2, vec3(.6), vec3(.6), vec3(1.0,1.0,1.+l*.3), vec3(0.5,0.20,0.25) ); } </script> <script id="vertexShader_buffer" type="x-shader/x-vertex">attribute vec4 a_position; uniform mat4 u_modelViewMatrix; uniform mat4 u_projectionMatrix; void main() { gl_Position = a_position; } </script> <script id="fragmentShader_velocity" type="x-shader/x-fragment"> #extension GL_OES_standard_derivatives : enable precision highp float; #define PI 3.141592653589793 #define HPI 1.5707963267948966 #define TAU 6.283185307179586 #define G 0.67408 uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform sampler2D s_noise; uniform sampler2D b_velocity; uniform sampler2D b_position; // Simplex 3D Noise // by Ian McEwan, Ashima Arts // vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);} vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;} float rand(float n){return fract(sin(n) * 43758.5453123);} float rand(vec2 n) { return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453); } float snoise(vec3 v){ const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0. + 0.0 * C vec3 x1 = x0 - i1 + 1.0 * C.xxx; vec3 x2 = x0 - i2 + 2.0 * C.xxx; vec3 x3 = x0 - 1. + 3.0 * C.xxx; // Permutations i = mod(i, 289.0 ); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients // ( N*N points uniformly over a square, mapped onto an octahedron.) float n_ = 1.0/7.0; // N=7 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z *ns.z); // mod(p,N*N) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } float noise21(vec2 n) { const vec2 d = vec2(0.0, 1.0); vec2 b = floor(n), f = smoothstep(vec2(0.0), vec2(1.0), fract(n)); return mix(mix(rand(b), rand(b + d.yx), f.x), mix(rand(b + d.xy), rand(b + d.yy), f.x), f.y); } void main() { vec2 uv = gl_FragCoord.xy / u_resolution.xy; vec2 position = texture2D(b_position, uv).xy; vec2 velocity = texture2D(b_velocity, uv).xy; float a = snoise(vec3(position*.002, u_time - floor(u_time*5.) * 20.)) * (3.14159 * 2.) + noise21(position)*5.; float c = cos(a); float s = sin(a); velocity = velocity * .99 + vec2(c, s) * .1; if(length(velocity) > 2.) velocity = normalize(velocity)*2.; gl_FragColor = vec4(velocity, 0., 1.0); } </script> <script id="fragmentShader_position" type="x-shader/x-fragment"> #extension GL_OES_standard_derivatives : enable precision highp float; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform sampler2D s_noise; uniform vec2 u_screen; uniform sampler2D b_velocity; uniform sampler2D b_position; void main() { vec2 uv = gl_FragCoord.xy / u_resolution.xy; vec2 position = texture2D(b_position, uv).xy; vec2 velocity = texture2D(b_velocity, uv).xy; vec2 pos = position+velocity*.99; if(pos.x > u_screen.x + 20.) pos.x = -10.; else if(pos.x < -20.) pos.x = u_screen.x + 10.; if(pos.y > u_screen.y + 20.) pos.y = -10.; else if(pos.y < -20.) pos.y = u_screen.y + 10.; gl_FragColor = vec4(pos, 0., 1.0); } </script> <script id="fragmentShader_particle" type="x-shader/x-fragment"> #extension GL_OES_standard_derivatives : enable precision highp float; uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform sampler2D s_noise; uniform sampler2D b_prime; uniform sampler2D b_position; varying vec3 v_colour; varying float v_fogDepth; const vec3 oneVector = vec3(1.0, 1.0, 1.0); const vec3 lightPosition = vec3(-.5, -.5, 2.); vec2 getScreenSpace() { vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x); return uv; } void main() { vec2 uv = gl_PointCoord.xy - .5; vec2 s = gl_FragCoord.xy / u_resolution.xy; gl_FragColor = vec4(0, 0, 0, 1); float l = length(uv); float opacity = smoothstep(.5, 0.45, l); if(opacity < .1) discard; float normalizedDepth = sqrt(1.0 - l * l); // Current depth float depthOfFragment = 0.5 * normalizedDepth; // float currentDepthValue = normalizedViewCoordinate.z - depthOfFragment - 0.0025; float currentDepthValue = (1. - depthOfFragment - 0.0025); // Calculate the lighting normal for the sphere vec3 normal = normalize(vec3(uv, normalizedDepth)); vec3 finalSphereColor = v_colour; // vec3 ref = reflect(vec3(0,0,-1), normal); vec3 ref = reflect(normalize(lightPosition), normal); float amb = clamp( 0.5+0.5*normal.y, 0.0, 1.0 ); float dif = clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 ); float bac = clamp( dot( normal, normalize(vec3(-lightPosition.x,0.0,-lightPosition.z))), 0.0, 1.0 )*clamp( 1.0-uv.y,0.0,1.0); //float dom = smoothstep( -0.1, 0.1, ref.y ); // float fre = pow( clamp(1.0+dot(nor,cam.rd),0.0,1.0), 2.0 ); float spe = pow(clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 ),32.0); vec3 lin = vec3(0.0); lin += 1.*dif*vec3(.95,0.80,0.60); // lin += 1.20*spe*vec3(1.00,0.85,0.55)*dif; // lin += 0.80*amb*vec3(0.50,0.70,.80); //lin += 0.30*dom*vec3(0.50,0.70,1.00)*occ; lin += 0.30*bac*vec3(0.25,0.25,0.25); lin += .30*spe*vec3(1.00,0.85,0.55)*dif; // ambient // float lightingIntensity = 0.3 + 0.7 * clamp(dot(lightPosition, normal), 0.0, 1.0); // finalSphereColor *= lightingIntensity; // // Per fragment specular lighting // lightingIntensity = clamp(dot(lightPosition, normal), 0.0, 1.0); // // lightingIntensity = pow(lightingIntensity, 10.0); // finalSphereColor += vec3(0.4, 0.4, 0.4) * lightingIntensity*lightingIntensity; finalSphereColor *= lin; gl_FragColor = vec4(finalSphereColor, opacity); } </script> <script type="module"> function _defineProperty(obj, key, value) {if (key in obj) {Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true });} else {obj[key] = value;}return obj;}function _classPrivateFieldSet(receiver, privateMap, value) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to set private field on non-instance");}if (descriptor.set) {descriptor.set.call(receiver, value);} else {if (!descriptor.writable) {throw new TypeError("attempted to set read only private field");}descriptor.value = value;}return value;}function _classPrivateFieldGet(receiver, privateMap) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to get private field on non-instance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}function _classStaticPrivateFieldSpecGet(receiver, classConstructor, descriptor) {if (receiver !== classConstructor) {throw new TypeError("Private static access of wrong provenance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}import { Vec2, Vec3, Mat2, Mat3, Mat4, Quat } from 'https://cdn.skypack.dev/wtc-math'; import gifJs from 'https://cdn.skypack.dev/gif.js'; console.clear(); const setup = function () { // Simulation dimensions const px = Math.min(window.devicePixelRatio, 2); const dimensions = [window.innerWidth, window.innerHeight]; const texturesize = 256; const particles = Math.pow(texturesize, 2); const textureArraySize = particles * 4; const canvas = document.createElement('canvas'); document.body.appendChild(canvas); const renderer = new Renderer(canvas, { width: dimensions[0], height: dimensions[1], alpha: false, premultipliedAlpha: false, preserveDrawingBuffer: true }); const ctx = renderer.ctx; let drawing = new Float32Array([-1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0]); const ants = new Float32Array(particles * 2).fill(0); const references = new Float32Array(particles * 2).fill(0); const positionData = new Float32Array(particles * 4).fill(0); const velocityData = new Float32Array(particles * 4).fill(0); for (let i = 0; i < ants.length; i += 2) { const index = i / 2; const tindex = i * 2; ants[i] = index % texturesize; // x position ants[i + 1] = Math.floor(index / texturesize); // y position references[i] = ants[i] / texturesize; // x position of the texture particle representing this ant references[i + 1] = ants[i + 1] / texturesize; // y position of the texture particle representing this ant positionData[tindex] = Math.random() * (window.innerWidth * px + 40); positionData[tindex + 1] = Math.random() * (window.innerHeight * px + 40); positionData[tindex + 2] = 0; positionData[tindex + 3] = 1; velocityData[tindex] = Math.random() - .5; velocityData[tindex + 1] = Math.random() - .5; velocityData[tindex + 2] = 0; velocityData[tindex + 3] = 1; } // for (let i = 0; i < textureArraySize; i += 4) { // positionData[i] = Math.random(); // positionData[i + 1] = Math.random(); // positionData[i + 2] = 0; // positionData[i + 3] = 1; // } const positionBuffer = new FrameBuffer(renderer, 'position', { width: texturesize, height: texturesize, tiling: Texture.IMAGETYPE_TILE, texdepth: FrameBuffer.TEXTYPE_FLOAT, pxRatio: 1, data: positionData }); const velocityBuffer = new FrameBuffer(renderer, 'velocity', { width: texturesize, height: texturesize, tiling: Texture.IMAGETYPE_TILE, texdepth: FrameBuffer.TEXTYPE_FLOAT, pxRatio: 1, data: velocityData }); const drawBuffer = new Buffer(ctx, drawing); const antBuffer = new Buffer(ctx, ants, { attributes: [{ name: 'ants', numComponents: 2 }] }); const referenceBuffer = new Buffer(ctx, references, { attributes: [{ name: 'reference', numComponents: 2 }] }); const vertexShader_buffer = document.getElementById('vertexShader_buffer').innerText; const vertexShader_particle = document.getElementById('vertexShader_particle').innerText; const programPosition = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_position').innerText, { renderType: Program.RENDER_STRIP }); const programVelocity = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_velocity').innerText, { renderType: Program.RENDER_STRIP }); const programMain = new Program(ctx, vertexShader_particle, document.getElementById('fragmentShader_particle').innerText, { // clearColour: [.15,.1,.05, 1.], clearColour: [.98, .95, .98, 1.], renderType: Program.RENDER_POINTS, blending: Renderer.BLENDING_NORMAL, depthTesting: false, transparent: true, premultiplied: false }); const time = new Uniform(ctx, 'time', Uniform.TYPE_FLOAT, 100); const uDelta = new Uniform(ctx, 'delta', Uniform.TYPE_FLOAT, 100); const mouse = new Uniform(ctx, 'mouse', Uniform.TYPE_V2, [0., 0.]); const screen = new Uniform(ctx, 'screen', Uniform.TYPE_V2, [window.innerWidth * px, window.innerHeight * px]); const noise = new Texture(ctx, 'noise', { textureType: Texture.IMAGETYPE_TILE, url: 'https://assets.codepen.io/982762/noise.png' }); noise.preload().then(n => { requestAnimationFrame(run); }); let pointerdown = false; let lastPos = new Vec2(); window.addEventListener('pointerdown', e => { pointerdown = true; lastPos = new Vec2(e.x, e.y); }); window.addEventListener('pointerup', e => { pointerdown = false; }); window.addEventListener('pointermove', e => { if (pointerdown) { let newPos = new Vec2(e.x, e.y); mouse.value = newPos.array; } }); let playing = true; const setPlaying = value => { playing = value; }; let autoTransitionTimer = 0; let timeToTransition = 0; const setupValues = i => { dimensions[0] = window.innerWidth; dimensions[1] = window.innerHeight; time.value = -10000; }; setupValues(0); let timeout; window.addEventListener('resize', () => { clearTimeout(timeout); timeout = setTimeout(() => { dimensions[0] = window.innerWidth; dimensions[1] = window.innerHeight; renderer.resize(dimensions[0], dimensions[1]); screen.value = [dimensions[0] * px, dimensions[1] * px]; }, 100); }); let then = 0; const run = delta => { let now = Date.now() / 1000; let _delta = now - then; then = now; if (_delta > 1000) { requestAnimationFrame(run); return; } if (playing) { uDelta.value = Math.min(_delta, 0.5); time.value += _delta * .05; renderer.setViewport([velocityBuffer.width, velocityBuffer.height]); // window.renderer = renderer; // console.log(renderer.uniformResolution.value) renderer.setupProgram(programVelocity, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]); velocityBuffer.render(4); renderer.setupProgram(programPosition, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]); positionBuffer.render(4); renderer.setViewport(); renderer.setupProgram(programMain, [referenceBuffer], [], [time, mouse, velocityBuffer, positionBuffer, screen]); renderer.render(particles); requestAnimationFrame(run); } }; }; // Determine whether a number is a power of 2 function powerOf2(v) { return v && !(v & v - 1); } // Return the next greatest power of 2 function nextPow2(v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } // Update a provided image to the nearest power of 2 in size. const pow2Image = c => { const newWidth = powerOf2(c.width) ? c.width : nextPow2(c.width); const newHeight = powerOf2(c.height) ? c.height : nextPow2(c.height); const _c = document.createElement('canvas'); const ctx = _c.getContext('2d'); _c.width = newWidth; _c.height = newHeight; ctx.drawImage(c, 0, 0, newWidth, newHeight); return _c; }; const asyncImageLoad = function (img, src) { return new Promise((resolve, reject) => { img.onload = () => resolve(img); img.onerror = reject; img.src = src; }); }; const glEnumToString = function () { const haveEnumsForType = {}; const enums = {}; function addEnums(gl) { const type = gl.constructor.name; if (!haveEnumsForType[type]) { for (const key in gl) { if (typeof gl[key] === 'number') { const existing = enums[gl[key]]; enums[gl[key]] = existing ? `${existing} | ${key}` : key; } } haveEnumsForType[type] = true; } } return function glEnumToString(gl, value) { addEnums(gl); return enums[value] || (typeof value === 'number' ? `0x${value.toString(16)}` : value); }; }(); const addExtensions = ctx => { // Set up the extensions ctx.getExtension('OES_standard_derivatives'); ctx.getExtension('EXT_shader_texture_lod'); ctx.getExtension('OES_texture_float'); ctx.getExtension('WEBGL_color_buffer_float'); ctx.getExtension('OES_texture_float_linear'); ctx.getExtension('EXT_color_buffer_float'); }; function createContext(c, opt_attribs, params) { const ctx = c.getContext("webgl", params) || this._el.getContext("experimental-webgl", params); addExtensions(ctx); return ctx; } const quatToMat4 = q => { if (q.array) q = q.array; // This just transforms a provided vector into to an array. if (q instanceof Array && q.length >= 4) { const [x, y, z, w] = q; const [x2, y2, z2] = q.map(x => x * 2.); const xx = x * x2, yx = y * x2, yy = y * y2, zx = z * x2, zy = z * y2, zz = z * z2, wx = w * x2, wy = w * y2, wz = w * z2; return new Mat4( 1 - yy - zz, yx - wz, zx + wy, 0, yx + wz, 1 - xx - zz, zy - wx, 0, zx - wy, zy + wx, 1 - xx - yy, 0, 0, 0, 0, 1); } };var _blending = new WeakMap();var _blendingEnabled = new WeakMap();var _buffers = new WeakMap(); class Renderer { constructor(canvas, options) {_defineProperty(this, "isWebgl2", false);_blending.set(this, { writable: true, value: void 0 });_blendingEnabled.set(this, { writable: true, value: false });_buffers.set(this, { writable: true, value: [] }); options = Object.assign({}, _classStaticPrivateFieldSpecGet(Renderer, Renderer, _defaultOptions), options); this.width = options.width; this.height = options.height; this.pxRatio = options.pxRatio; this.clearing = options.clearing; this.depthTesting = options.depthTesting; this.canvas = canvas || document.createElement('canvas'); this.canvas.width = this.width * this.pxRatio; this.canvas.height = this.height * this.pxRatio; this.premultipliedAlpha = options.premultipliedAlpha; this.ctx = this.canvas.getContext("webgl", options) || this.canvas.getContext("experimental-webgl", options); this.ctx.viewportWidth = this.canvas.width; this.ctx.viewportHeight = this.canvas.height; this.uniformResolution = new Uniform(this.ctx, 'resolution', Uniform.TYPE_V2, [this.canvas.width, this.canvas.height]); this.addExtensions(); } resize(w, h, ratio) { this.width = w; this.height = h; this.pxRatio = ratio || this.pxRatio; this.canvas.width = this.width * this.pxRatio; this.canvas.height = this.height * this.pxRatio; this.ctx.viewportWidth = this.canvas.width; this.ctx.viewportHeight = this.canvas.height; this.uniformResolution = new Uniform(this.ctx, 'resolution', Uniform.TYPE_V2, [this.canvas.width, this.canvas.height]); } setViewport(dimensions) { let w = this.width * this.pxRatio; let h = this.height * this.pxRatio; if (dimensions) { w = dimensions[0]; h = dimensions[1]; } this.ctx.viewport(0, 0, w, h); this.uniformResolution = new Uniform(this.ctx, 'resolution', Uniform.TYPE_V2, [w, h]); } addExtensions() { this.ctx.getExtension('OES_standard_derivatives'); this.ctx.getExtension('EXT_shader_texture_lod'); this.ctx.getExtension('OES_texture_float'); this.ctx.getExtension('WEBGL_color_buffer_float'); this.ctx.getExtension('OES_texture_float_linear'); this.ctx.getExtension('EXT_color_buffer_float'); } linkBuffer(buffer) { let hasBuffer = false; _classPrivateFieldGet(this, _buffers).forEach(b => { if (buffer === b) hasBuffer = true; }); if (!hasBuffer) { this.ctx.bindBuffer(this.ctx.ARRAY_BUFFER, buffer.buffer); this.ctx.bufferData( this.ctx.ARRAY_BUFFER, buffer.data, buffer.drawType); } buffer.link(this.currentProgram.program); } setupProgram(program, buffers, attributes, uniforms) { this.currentProgram = program; this.ctx.useProgram(program.program); this.premultiplied = program.premultiplied; this.depthTesting = program.depthTesting; if (program.blending === Program.BLENDING_NORMAL && program.transparent === false) { this.blending = Program.BLENDING_OFF; } else { this.blending = program.blending; } this.clearColour = program.clearColour; const a = this.clearColour[3]; // console.log('prem', this.premultipliedAlpha) if (this.premultipliedAlpha) this.clearColour = this.clearColour.map((c, i) => c * a); this.ctx.clearColor(...this.clearColour); // TODO: Unlink unused buffers during this setup phase as well. buffers.forEach(buffer => { this.linkBuffer(buffer); }); // this.ctx.enable(ctx.DEPTH_TEST); if (this.depthTesting) this.ctx.enable(this.ctx.DEPTH_TEST);else this.ctx.disable(this.ctx.DEPTH_TEST); uniforms.forEach(uniform => { uniform.bind(program.program); }); this.uniformResolution.bind(program.program); } render(points, buffer) { this.ctx.bindFramebuffer(this.ctx.FRAMEBUFFER, (buffer === null || buffer === void 0 ? void 0 : buffer.fb) || null); if (this.clearing) { this.ctx.clear(this.ctx.COLOR_BUFFER_BIT); if (this.depthTesting) this.ctx.clear(this.ctx.DEPTH_BUFFER_BIT); } switch (this.currentProgram.renderType) { case Program.RENDER_TRIANGLES: this.ctx.drawArrays(this.ctx.TRIANGLES, 0, points); break; case Program.RENDER_STRIP: this.ctx.drawArrays(this.ctx.TRIANGLE_STRIP, 0, points); break; case Program.RENDER_LINES: this.ctx.drawArrays(this.ctx.LINE_STRIP, 0, points); break; case Program.RENDER_LINELOOP: this.ctx.drawArrays(this.ctx.LINE_LOOP, 0, points); break; case Program.RENDER_POINTS: this.ctx.drawArrays(this.ctx.POINTS, 0, points); break;} } /* SETTERS AND GETTERS */ get blending() { return _classPrivateFieldGet(this, _blending) || Program.BLENDING_NORMAL; } set blending(blending) { if (blending === Renderer.BLENDING_DEBUG) { if (!this.breakLog) { console.log(blending, Renderer.BLENDING_OFF, this.premultiplied); this.breakLog = true; } _classPrivateFieldSet(this, _blending, blending); this.ctx.enable(this.ctx.BLEND); this.ctx.blendFuncSeparate(this.ctx.ONE, this.ctx.ONE_MINUS_SRC_ALPHA, this.ctx.ONE, this.ctx.ONE_MINUS_SRC_ALPHA); return; } _classPrivateFieldSet(this, _blending, blending); if (blending === Renderer.BLENDING_OFF) { this.ctx.disable(this.ctx.BLEND); _classPrivateFieldSet(this, _blendingEnabled, false); return; } if (_classPrivateFieldGet(this, _blendingEnabled) === false) { this.ctx.enable(this.ctx.BLEND); // this.ctx.alphaFunc(this.ctx.GL_GREATER, 0.5); // this.ctx.enable(this.ctx.GL_ALPHA_TEST); _classPrivateFieldSet(this, _blendingEnabled, true); } if (this.premultiplied) { switch (this.blending) { .........完整代码请登录后点击上方下载按钮下载查看
网友评论0