webgl实现canvas漂浮小球随波逐流动画效果代码
代码语言:html
所属分类:粒子
代码描述:webgl实现canvas漂浮小球随波逐流动画效果代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<html lang="en"><head>
<meta charset="UTF-8">
<style>
body {
background: #666;
margin: 0;
overflow: hidden;
}
canvas {
height: 100vh;
width: 100vw;
touch-action: none;
}
.osc {
left: 0px;
position: fixed;
top: 0px;
}
.button {
position: fixed;
z-index: 10;
right: 0;
bottom: 0;
}
.controls {
position: fixed;
z-index: 10;
left: 0;
bottom: 0;
}
.playpause {
background: #AAB;
padding: 10px;
}
.playpause label {
display: block;
box-sizing: border-box;
width: 0;
height: 20px;
cursor: pointer;
border-color: transparent transparent transparent #202020;
transition: 100ms all ease;
will-change: border-width;
border-style: double;
border-width: 0px 0 0px 20px;
}
.playpause input[type='checkbox'] {
visibility: hidden;
}
.playpause.checked label {
border-style: double;
border-width: 0px 0 0px 20px;
}
.playpause label {
border-style: solid;
border-width: 10px 0 10px 20px;
}
/* } */
</style>
</head>
<body >
<script id="vertexShader_particle" type="x-shader/x-vertex">
attribute vec4 a_position;
attribute vec3 a_colour;
attribute vec2 a_reference;
uniform vec2 u_resolution;
uniform sampler2D b_velocity;
uniform sampler2D b_position;
varying vec3 v_colour;
varying float v_fogDepth;
vec3 palette( in float t, in vec3 a, in vec3 b, in vec3 c, in vec3 d ) {
return a + b*cos( 6.28318*(c*t+d) );
}
float rand(vec2 n) {
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
}
vec3 hsv2rgb(vec3 c) {
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main() {
vec2 position = texture2D(b_position, a_reference).xy;
vec2 velocity = texture2D(b_velocity, a_reference).xy;
float l = length(velocity);
vec4 pos = vec4(position / u_resolution * 2. - 1., 0., 1.);
gl_Position = pos;
gl_PointSize = 15.;
v_colour = palette(
length(a_reference)-l*.2,
vec3(.6),
vec3(.6),
vec3(1.0,1.0,1.+l*.3),
vec3(0.5,0.20,0.25)
);
}
</script>
<script id="vertexShader_buffer" type="x-shader/x-vertex">attribute vec4 a_position;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
void main() {
gl_Position = a_position;
}
</script>
<script id="fragmentShader_velocity" type="x-shader/x-fragment">
#extension GL_OES_standard_derivatives : enable
precision highp float;
#define PI 3.141592653589793
#define HPI 1.5707963267948966
#define TAU 6.283185307179586
#define G 0.67408
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D s_noise;
uniform sampler2D b_velocity;
uniform sampler2D b_position;
// Simplex 3D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float rand(float n){return fract(sin(n) * 43758.5453123);}
float rand(vec2 n) {
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
}
float snoise(vec3 v){
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0. + 0.0 * C
vec3 x1 = x0 - i1 + 1.0 * C.xxx;
vec3 x2 = x0 - i2 + 2.0 * C.xxx;
vec3 x3 = x0 - 1. + 3.0 * C.xxx;
// Permutations
i = mod(i, 289.0 );
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients
// ( N*N points uniformly over a square, mapped onto an octahedron.)
float n_ = 1.0/7.0; // N=7
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z *ns.z); // mod(p,N*N)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
float noise21(vec2 n) {
const vec2 d = vec2(0.0, 1.0);
vec2 b = floor(n), f = smoothstep(vec2(0.0), vec2(1.0), fract(n));
return mix(mix(rand(b), rand(b + d.yx), f.x), mix(rand(b + d.xy), rand(b + d.yy), f.x), f.y);
}
void main() {
vec2 uv = gl_FragCoord.xy / u_resolution.xy;
vec2 position = texture2D(b_position, uv).xy;
vec2 velocity = texture2D(b_velocity, uv).xy;
float a = snoise(vec3(position*.002, u_time - floor(u_time*5.) * 20.)) * (3.14159 * 2.) + noise21(position)*5.;
float c = cos(a);
float s = sin(a);
velocity = velocity * .99 + vec2(c, s) * .1;
if(length(velocity) > 2.) velocity = normalize(velocity)*2.;
gl_FragColor = vec4(velocity, 0., 1.0);
}
</script>
<script id="fragmentShader_position" type="x-shader/x-fragment">
#extension GL_OES_standard_derivatives : enable
precision highp float;
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D s_noise;
uniform vec2 u_screen;
uniform sampler2D b_velocity;
uniform sampler2D b_position;
void main() {
vec2 uv = gl_FragCoord.xy / u_resolution.xy;
vec2 position = texture2D(b_position, uv).xy;
vec2 velocity = texture2D(b_velocity, uv).xy;
vec2 pos = position+velocity*.99;
if(pos.x > u_screen.x + 20.) pos.x = -10.;
else if(pos.x < -20.) pos.x = u_screen.x + 10.;
if(pos.y > u_screen.y + 20.) pos.y = -10.;
else if(pos.y < -20.) pos.y = u_screen.y + 10.;
gl_FragColor = vec4(pos, 0., 1.0);
}
</script>
<script id="fragmentShader_particle" type="x-shader/x-fragment">
#extension GL_OES_standard_derivatives : enable
precision highp float;
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D s_noise;
uniform sampler2D b_prime;
uniform sampler2D b_position;
varying vec3 v_colour;
varying float v_fogDepth;
const vec3 oneVector = vec3(1.0, 1.0, 1.0);
const vec3 lightPosition = vec3(-.5, -.5, 2.);
vec2 getScreenSpace() {
vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
return uv;
}
void main() {
vec2 uv = gl_PointCoord.xy - .5;
vec2 s = gl_FragCoord.xy / u_resolution.xy;
gl_FragColor = vec4(0, 0, 0, 1);
float l = length(uv);
float opacity = smoothstep(.5, 0.45, l);
if(opacity < .1) discard;
float normalizedDepth = sqrt(1.0 - l * l);
// Current depth
float depthOfFragment = 0.5 * normalizedDepth;
// float currentDepthValue = normalizedViewCoordinate.z - depthOfFragment - 0.0025;
float currentDepthValue = (1. - depthOfFragment - 0.0025);
// Calculate the lighting normal for the sphere
vec3 normal = normalize(vec3(uv, normalizedDepth));
vec3 finalSphereColor = v_colour;
// vec3 ref = reflect(vec3(0,0,-1), normal);
vec3 ref = reflect(normalize(lightPosition), normal);
float amb = clamp( 0.5+0.5*normal.y, 0.0, 1.0 );
float dif = clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 );
float bac = clamp( dot( normal, normalize(vec3(-lightPosition.x,0.0,-lightPosition.z))), 0.0, 1.0 )*clamp( 1.0-uv.y,0.0,1.0);
//float dom = smoothstep( -0.1, 0.1, ref.y );
// float fre = pow( clamp(1.0+dot(nor,cam.rd),0.0,1.0), 2.0 );
float spe = pow(clamp( dot( ref, normalize(vec3(0) - vec3(uv, normalizedDepth)) ), 0.0, 1.0 ),32.0);
vec3 lin = vec3(0.0);
lin += 1.*dif*vec3(.95,0.80,0.60);
// lin += 1.20*spe*vec3(1.00,0.85,0.55)*dif;
// lin += 0.80*amb*vec3(0.50,0.70,.80);
//lin += 0.30*dom*vec3(0.50,0.70,1.00)*occ;
lin += 0.30*bac*vec3(0.25,0.25,0.25);
lin += .30*spe*vec3(1.00,0.85,0.55)*dif;
// ambient
// float lightingIntensity = 0.3 + 0.7 * clamp(dot(lightPosition, normal), 0.0, 1.0);
// finalSphereColor *= lightingIntensity;
// // Per fragment specular lighting
// lightingIntensity = clamp(dot(lightPosition, normal), 0.0, 1.0);
// // lightingIntensity = pow(lightingIntensity, 10.0);
// finalSphereColor += vec3(0.4, 0.4, 0.4) * lightingIntensity*lightingIntensity;
finalSphereColor *= lin;
gl_FragColor = vec4(finalSphereColor, opacity);
}
</script>
<script type="module">
function _defineProperty(obj, key, value) {if (key in obj) {Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true });} else {obj[key] = value;}return obj;}function _classPrivateFieldSet(receiver, privateMap, value) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to set private field on non-instance");}if (descriptor.set) {descriptor.set.call(receiver, value);} else {if (!descriptor.writable) {throw new TypeError("attempted to set read only private field");}descriptor.value = value;}return value;}function _classPrivateFieldGet(receiver, privateMap) {var descriptor = privateMap.get(receiver);if (!descriptor) {throw new TypeError("attempted to get private field on non-instance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}function _classStaticPrivateFieldSpecGet(receiver, classConstructor, descriptor) {if (receiver !== classConstructor) {throw new TypeError("Private static access of wrong provenance");}if (descriptor.get) {return descriptor.get.call(receiver);}return descriptor.value;}import { Vec2, Vec3, Mat2, Mat3, Mat4, Quat } from 'https://cdn.skypack.dev/wtc-math';
import gifJs from 'https://cdn.skypack.dev/gif.js';
console.clear();
const setup = function () {
// Simulation dimensions
const px = Math.min(window.devicePixelRatio, 2);
const dimensions = [window.innerWidth, window.innerHeight];
const texturesize = 256;
const particles = Math.pow(texturesize, 2);
const textureArraySize = particles * 4;
const canvas = document.createElement('canvas');
document.body.appendChild(canvas);
const renderer = new Renderer(canvas, { width: dimensions[0], height: dimensions[1], alpha: false, premultipliedAlpha: false, preserveDrawingBuffer: true });
const ctx = renderer.ctx;
let drawing = new Float32Array([-1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0]);
const ants = new Float32Array(particles * 2).fill(0);
const references = new Float32Array(particles * 2).fill(0);
const positionData = new Float32Array(particles * 4).fill(0);
const velocityData = new Float32Array(particles * 4).fill(0);
for (let i = 0; i < ants.length; i += 2) {
const index = i / 2;
const tindex = i * 2;
ants[i] = index % texturesize; // x position
ants[i + 1] = Math.floor(index / texturesize); // y position
references[i] = ants[i] / texturesize; // x position of the texture particle representing this ant
references[i + 1] = ants[i + 1] / texturesize; // y position of the texture particle representing this ant
positionData[tindex] = Math.random() * (window.innerWidth * px + 40);
positionData[tindex + 1] = Math.random() * (window.innerHeight * px + 40);
positionData[tindex + 2] = 0;
positionData[tindex + 3] = 1;
velocityData[tindex] = Math.random() - .5;
velocityData[tindex + 1] = Math.random() - .5;
velocityData[tindex + 2] = 0;
velocityData[tindex + 3] = 1;
}
// for (let i = 0; i < textureArraySize; i += 4) {
// positionData[i] = Math.random();
// positionData[i + 1] = Math.random();
// positionData[i + 2] = 0;
// positionData[i + 3] = 1;
// }
const positionBuffer = new FrameBuffer(renderer, 'position', {
width: texturesize,
height: texturesize,
tiling: Texture.IMAGETYPE_TILE,
texdepth: FrameBuffer.TEXTYPE_FLOAT,
pxRatio: 1,
data: positionData });
const velocityBuffer = new FrameBuffer(renderer, 'velocity', {
width: texturesize,
height: texturesize,
tiling: Texture.IMAGETYPE_TILE,
texdepth: FrameBuffer.TEXTYPE_FLOAT,
pxRatio: 1,
data: velocityData });
const drawBuffer = new Buffer(ctx, drawing);
const antBuffer = new Buffer(ctx, ants, {
attributes: [{
name: 'ants',
numComponents: 2 }] });
const referenceBuffer = new Buffer(ctx, references, {
attributes: [{
name: 'reference',
numComponents: 2 }] });
const vertexShader_buffer = document.getElementById('vertexShader_buffer').innerText;
const vertexShader_particle = document.getElementById('vertexShader_particle').innerText;
const programPosition = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_position').innerText, {
renderType: Program.RENDER_STRIP });
const programVelocity = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_velocity').innerText, {
renderType: Program.RENDER_STRIP });
const programMain = new Program(ctx, vertexShader_particle, document.getElementById('fragmentShader_particle').innerText, {
// clearColour: [.15,.1,.05, 1.],
clearColour: [.98, .95, .98, 1.],
renderType: Program.RENDER_POINTS,
blending: Renderer.BLENDING_NORMAL,
depthTesting: false,
transparent: true,
premultiplied: false });
const time = new Uniform(ctx, 'time', Uniform.TYPE_FLOAT, 100);
const uDelta = new Uniform(ctx, 'delta', Uniform.TYPE_FLOAT, 100);
const mouse = new Uniform(ctx, 'mouse', Uniform.TYPE_V2, [0., 0.]);
const screen = new Uniform(ctx, 'screen', Uniform.TYPE_V2, [window.innerWidth * px, window.innerHeight * px]);
const noise = new Texture(ctx, 'noise', {
textureType: Texture.IMAGETYPE_TILE,
url: 'https://assets.codepen.io/982762/noise.png' });
noise.preload().then(n => {
requestAnimationFrame(run);
});
let pointerdown = false;
let lastPos = new Vec2();
window.addEventListener('pointerdown', e => {
pointerdown = true;
lastPos = new Vec2(e.x, e.y);
});
window.addEventListener('pointerup', e => {
pointerdown = false;
});
window.addEventListener('pointermove', e => {
if (pointerdown) {
let newPos = new Vec2(e.x, e.y);
mouse.value = newPos.array;
}
});
let playing = true;
const setPlaying = value => {
playing = value;
};
let autoTransitionTimer = 0;
let timeToTransition = 0;
const setupValues = i => {
dimensions[0] = window.innerWidth;
dimensions[1] = window.innerHeight;
time.value = -10000;
};
setupValues(0);
let timeout;
window.addEventListener('resize', () => {
clearTimeout(timeout);
timeout = setTimeout(() => {
dimensions[0] = window.innerWidth;
dimensions[1] = window.innerHeight;
renderer.resize(dimensions[0], dimensions[1]);
screen.value = [dimensions[0] * px, dimensions[1] * px];
}, 100);
});
let then = 0;
const run = delta => {
let now = Date.now() / 1000;
let _delta = now - then;
then = now;
if (_delta > 1000) {
requestAnimationFrame(run);
return;
}
if (playing) {
uDelta.value = Math.min(_delta, 0.5);
time.value += _delta * .05;
renderer.setViewport([velocityBuffer.width, velocityBuffer.height]);
// window.renderer = renderer;
// console.log(renderer.uniformResolution.value)
renderer.setupProgram(programVelocity, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]);
velocityBuffer.render(4);
renderer.setupProgram(programPosition, [drawBuffer], [], [time, mouse, velocityBuffer, positionBuffer, uDelta, screen]);
positionBuffer.render(4);
renderer.setViewport();
renderer.setupProgram(programMain, [referenceBuffer], [], [time, mouse, velocityBuffer, positionBuffer, screen]);
renderer.render(particles);
requestAnimationFrame(run);
}
};
};
// Determine whether a number is a power of 2
function powe.........完整代码请登录后点击上方下载按钮下载查看
网友评论0