js实现canvas液态鼠标跟随动画效果代码

代码语言:html

所属分类:动画

代码描述:js实现canvas液态鼠标跟随动画效果代码

代码标签: 液态 鼠标 跟随 动画 效果

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<html>
<head>
    <style>
        body {
            background: #555555;
            margin: 0;
        }

        canvas {
            position: fixed;
        }
    </style>

</head>
<body>
    <canvas id="webgl" width="574" height="611" style="width: 574px; height: 611px;"></canvas>

    <script id="vertexShader" type="x-shader/x-vertex">
        attribute vec4 a_position;

        uniform mat4 u_modelViewMatrix;
        uniform mat4 u_projectionMatrix;

        void main() {
            gl_Position = a_position;
        }
    </script>
    <script id="fragmentShader" type="x-shader/x-fragment">
        #extension GL_OES_standard_derivatives: enable
        precision highp float;

        uniform vec2 u_resolution;
        uniform vec2 u_mouse;
        uniform vec2 u_oldmouse;
        uniform float u_time;
        uniform sampler2D u_noise;

        uniform int u_frame;

        uniform sampler2D u_b_buffer;
        uniform bool u_buffer_pass;

        #define PI 3.141592653589793

        vec2 getScreenSpace() {
            vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);

            return uv;
        }

        float sdSegment(in vec2 p, in vec2 a, in vec2 b) {
            vec2 pa = p-a,
            ba = b-a;
            float h = clamp(dot(pa, ba)/dot(ba, ba), 0.0, 1.0);
            return length(pa - ba*h);
        }

        vec4 render_effect() {
            vec2 uv = getScreenSpace();
            vec2 oldmouse = u_oldmouse.xy;
            vec2 mouse = u_mouse.xy;

            return vec4(vec3(smoothstep(.02, .0, sdSegment(uv, oldmouse, mouse))), 1.);
        }

        vec4 blurBuffer(vec2 uv) {
            vec3 pixs = vec3(1./u_resolution.xy, 0.)*5.;

            vec4 sample = texture2D(u_b_buffer, uv + pixs.zy);
            sample += texture2D(u_b_buffer, uv - pixs.zy);
            sample += texture2D(u_b_buffer, uv + pixs.xz);
            sample += texture2D(u_b_buffer, uv - pixs.xz);

            sample *= .25;

            return sample;
        }

        void main() {
            vec4 tex = texture2D(u_b_buffer, gl_FragCoord.xy/u_resolution.xy);
            tex = blurBuffer(gl_FragCoord.xy/u_resolution.xy);
            if (u_buffer_pass) {
                gl_FragColor = (tex * .9995 + render_effect());
            } else {
                float f = sin(min(10., tex.r));
                f = smoothstep(0., 1., tex.r);
                float tex1 = texture2D(u_b_buffer, gl_FragCoord.xy/u_resolution.xy - 20./u_resolution.xy).r;
                float f1 = sin(min(10., tex1));
                f1 = smoothstep(0., 1., tex1);
                float s = f;
                s = 1. - pow(s, .3);
                s = s*3.;
                float r = smoothstep(0.6, .8, f) - s;
                float g = smoothstep(0.5, .5+fwidth(f), f) - s;
                float b = smoothstep(0.1, .4, f1) - s;
                float sh = clamp(r-b, 0., 1.);
                // sh = smoothstep(0., .8, sh);
                gl_FragColor = vec4(vec3(r-sh*.5), 1.);
            }
        }

    </script>
    <script>
        function _defineProperty(obj, key, value) {
            if (key in obj) {
                Object.defineProperty(obj, key, {
                    value: value, enumerable: true, configurable: true, writable: true
                });
            } else {
                obj[key] = value;
            }return obj;
        } /**
        * A basic Web GL class. This provides a very basic setup for GLSL shader code.
        * Currently it doesn't support anything except for clip-space 3d, but this was
        * done so that we could start writing fragments right out of the gate. My
        * Intention is to update it with particle and polygonal 3d support later on.
        *
        * @class WTCGL
        * @author Liam Egan <liam@wethecollective.com>
        * @version 0.0.8
        * @created Jan 16, 2019
        */
        class WTCGL {

            /**
            * The WTCGL Class constructor. If construction of the webGL context fails
            * for any reason this will return null.
            *
            * @TODO make the dimension properties properly optional
            * @TODO provide the ability to allow for programmable buffers
            *
            * @constructor
            * @param {HTMLElement} el The canvas element to use as the root
            * @param {string} vertexShaderSource The vertex shader source
            * @param {string} fragmentShaderSource The fragment shader source
            * @param {number} [width] The width of the webGL context. This will default to the canvas dimensions
            * @param {number} [height] The height of the webGL context. This will default to the canvas dimensions
            * @param {number} [pxratio=1] The pixel aspect ratio of the canvas
            * @param {boolean} [styleElement] A boolean indicating whether to apply a style property to the canvas (resizing the canvas by the inverse of the pixel ratio)
            * @param {boolean} [webgl2] A boolean indicating whether to try to create a webgl2 context instead of a regulart context
            */
            constructor(el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, styleElement, webgl2, params = {}) {
                this.run = this.run.bind(this);

                this._onRun = () => {};

                // Destructure if an object is aprovided instead a series of parameters
                if (el instanceof Object && el.el) {
                    ({
                        el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, webgl2, styleElement
                    } = el);
                }

                // If the HTML element isn't a canvas, return null
                if (!el instanceof HTMLElement || el.nodeName.toLowerCase() !== 'canvas') {
                    console.log('Provided element should be a canvas element');
                    return null;
                }

                this._el = el;
                // The context should be either webgl2, webgl or experimental-webgl
                if (webgl2 === true) {
                    this.isWebgl2 = true;
                    this._ctx = this._el.getContext("webgl2", this.webgl_params) || this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params);
                } else {
                    this.isWebgl2 = false;
                    this._ctx = this._el.getContext("webgl", Object.assign({}, this.webgl_params, params)) || this._el.getContext("experimental-webgl", Object.assign({}, this.webgl_params, params));
                }

                // Set up the extensions
                this._ctx.getExtension('OES_standard_derivatives');
                this._ctx.getExtension('EXT_shader_texture_lod');
                this._ctx.getExtension('OES_texture_float');
                this._ctx.getExtension('WEBGL_color_buffer_float');
                this._ctx.getExtension('OES_texture_float_linear');
                this._ctx.getExtension('EXT_color_buffer_float');

                // We can't make the context so return an error
                if (!this._ctx) {
                    console.log('Browser doesn\'t support WebGL ');
                    return null;
                }

                // Create the shaders
                this._vertexShader = WTCGL.createShaderOfType(this._ctx, this._ctx.VERTEX_SHADER, vertexShaderSource);
                this._fragmentShader = WTCGL.createShaderOfType(this._ctx, this._ctx.FRAGMENT_SHADER, fragmentShaderSource);

                // Create the program and link the shaders
                this._program = this._ctx.createProgram();
                this._ctx.attachShader(this._program, this._vertexShader);
                this._ctx.attachShader(this._program, this._fragmentShader);
                this._ctx.linkProgram(this._program);

                // If we can't set up the params, this means the shaders have failed for some reason
                if (!this._ctx.getProgramParameter(this._program, this._ctx.LINK_STATUS)) {
                    console.log('Unable to initialize the shader program: ' + this._ctx.getProgramInfoLog(this._program));
                    return null;
                }

                // Initialise the vertex buffers
                this.initBuffers([
                    -1.0, 1.0, -1.,
                    1.0, 1.0, -1.,
                    -1.0, -1.0, -1.,
                    1.0, -1.0, -1.]);


                // Initialise the frame buffers
                this.frameBuffers = [];

                // The program information object. This is essentially a state machine for the webGL instance
                this._programInfo = {
                    attribs: {
                        vertexPosition: this._ctx.getAttribLocation(this._program, 'a_position')
                    },

                    uniforms: {
                        projectionMatrix: this._ctx.getUniformLocation(this._program, 'u_projectionMatrix'),
                        modelViewMatrix: this._ctx.getUniformLocation(this._program, 'u_modelViewMatrix'),
                        resolution: this._ctx.getUniformLocation(this._program, 'u_resolution'),
                        time: this._ctx.getUniformLocation(this._program, 'u_time')
                    }
                };



                // Tell WebGL to use our program when drawing
                this._ctx.useProgram(this._program);

                this.pxratio = pxratio;

                this.styleElement = styleElement !== true;

                this.resize(width, height);
            }


            /**
            * Public methods
            */

            addFrameBuffer(w, h, tiling = 0, buffertype = 0) {
                // create to render to
                const gl = this._ctx;
                const targetTextureWidth = w * this.pxratio;
                const targetTextureHeight = h * this.pxratio;
                const targetTexture = gl.createTexture();
                gl.bindTexture(gl.TEXTURE_2D, targetTexture);
                {
                    // define size and format of level 0
                    const level = 0;
                    let internalFormat = gl.RGBA;
                    const border = 0;
                    let format = gl.RGBA;
                    let t;
                    if (buffertype & WTCGL.TEXTYPE_FLOAT) {
                        const e = gl.getExtension('OES_texture_float');
                        window.extension = e;
                        t = e.FLOAT;
                        // internalFormat = gl.RGBA32F;
                    } else if (buffertype & WTCGL.TEXTYPE_HALF_FLOAT_OES) {
                        // t = gl.renderer.isWebgl2 ? e.HALF_FLOAT : e.HALF_FLOAT_OES;
                        //     gl.renderer.extensions['OES_texture_half_float'] ? gl.renderer.extensions['OES_texture_half_float'].HALF_FLOAT_OES :
                        //     gl.UNSIGNED_BYTE;
                        const e = gl.getExtension('OES_texture_half_float');
                        t = this.isWebgl2 ? gl.HALF_FLOAT: e.HALF_FLOAT_OES;
                        // format = gl.RGBA;
                        if (this.isWebgl2) {
                            internalFormat = gl.RGBA16F;
                        }
                        // internalFormat = gl.RGB32F;
                        // format = gl.RGB32F;
                        // window.gl = gl
                        // t = e.HALF_FLOAT_OES;
                    } else {
                        t = gl.UNSIGNED_BYTE;
                    }
                    const type = t;
                    const data = null;
                    gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
                        targetTextureWidth, targetTextureHeight, border,
                        format, type, data);
                    // gl.generateMipmap(gl.TEXTURE_2D);

                    // set the filtering so we don't need mips
                    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
                    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);

                    // Set the parameters based on the passed type
                    if (tiling === WTCGL.IMAGETYPE_TILE) {
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT);
                    } else if (tiling === WTCGL.IMAGETYPE_MIRROR) {
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.MIRRORED_REPEAT);
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.MIRRORED_REPEAT);
                    } else if (tiling === WTCGL.IMAGETYPE_REGULAR) {
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
                        gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
                    }
                }

                // Create and bind the framebuffer
                const fb = gl.createFramebuffer();
                gl.bindFramebuffer(gl.FRAMEBUFFER, fb);

                // attach the texture as the first color attachment
                const attachmentPoint = gl.COLOR_ATTACHMENT0;
                const level = 0;
                gl.framebufferTexture2D(gl.FRAMEBUFFER, attachmentPoint, gl.TEXTURE_2D, targetTexture, level);

                return {
                    w: w * this.pxratio,
                    h: h * this.pxratio,
                    fb: fb,
                    frameTexture: targetTexture
                };

            }


            /**
            * Resizes the canvas to a specified width and height, respecting the pixel ratio
            *
            * @param  {number} w The width of the canvas
            * @param  {number} h The height of the canvas
            * @return {Void}
            */
            resize(w, h) {
                this.width = w;
                this.height = h;
                this._el.width = w * this.pxratio;
                this._el.height = h * this.pxratio;
                this._size = [w * this.pxratio,
                    h * this.pxratio];
                if (this.styleElement) {
                    this._el.style.width = w + 'px';
                    this._el.style.height = h + 'px';
                }

                this._ctx.viewportWidth = w * this.pxratio;
                this._ctx.viewportHeight = h * this.pxratio;

                this._ctx.uniform2fv(this._programInfo.uniforms.resolution, this._size);

                this.initBuffers(this._positions);
            }

            /**
            * Initialise a provided vertex buffer
            *
            * @param  {array} positions The vertex positions to initialise
            * @return {Void}
            */
            initBuffers(positions) {
                this._positions = positions;
                this._positionBuffer = this._ctx.createBuffer();

                this._ctx.bindBuffer(this._ctx.ARRAY_BUFFER, this._positionBuffer);

                this._ctx.bufferData(this._ctx.ARRAY_BUFFER,
                    new Float32Array(positions),
                    this._ctx.STATIC_DRAW);
            }

            /**
            * Add a uniform to the program. At this time the following types are supported:
            * - Float - WTCGL.TYPE_FLOAT
            * - Vector 2 - WTCGL.TYPE_V2
            * - Vector 3 - WTCGL.TYPE_V3
            * - Vector 4 - WTCGL.TYPE_V4
            *
            * @param  {string} name The name of the uniform. N.B. your name will be prepended with a `u_` in your shaders. So providing a name of `foo` here will result in a uniform named `u_foo`
            * @param  {WTCGL.UNIFORM_TYPE} type The unfiform type
            * @param  {number|array} value The unfiform value. The type depends on the uniform type being created
            * @return {WebGLUniformLocation} The uniform location for later reference
            */
            addUniform(name, type, value) {
                let uniform = this._programInfo.uniforms[name];
                uniform = this._ctx.getUniformLocation(this._program, `u_${name}`);
                switch (type) {
                    case WTCGL.TYPE_INT:
                        if (!isNaN(value)) this._ctx.uniform1i(uniform, value);
                        break;
                    case WTCGL.TYPE_FLOAT:
                        if (!isNaN(value)) this._ctx.uniform1f(uniform, value);
                        break;
                    case WTCGL.TYPE_V2:
                        if (value instanceof Array && value.length === 2.) this._ctx.uniform2fv(uniform, value);
                        break;
                    case WTCGL.TYPE_V3:
                        if (value instanceof Array && value.length === 3.) this._ctx.uniform3fv(uniform, value);
                        break;
                    case WTCGL.TYPE_V4:
                        if (value instanceof Array && value.length === 4.) this._ctx.uniform4fv(uniform, value);
                        break;
                    case WTCGL.TYPE_BOOL:
                        if (!isNaN(value)) this._ctx.uniform1i(uniform, value);
                        break;
                }

                this._programInfo.uniforms[name] = uniform;
                return uniform;
            }

            /**
            * Adds a texture to the program and links it to a named uniform. Providing the type changes the tiling properties of the texture. Possible values for type:
            * - WTCGL.IMAGETYPE_REGULAR - No tiling, clamp to edges and doesn't need to be power of 2.
            * - WTCGL.IMAGETYPE_TILE - full x and y tiling, needs to be power of 2.
            * - WTCGL.IMAGETYPE_MIRROR - mirror tiling, needs to be power of 2.
            *
            * @public
            * @param  {string} name The name of the uniform. N.B. your name will be prepended with a `u_` in your shaders. So providing a name of `foo` here will result in a uniform named `u_foo`
            * @param  {WTCGL.TYPE_IMAGETYPE} type The type of texture to create. This is basically the tiling behaviour of the texture as described above
            * @param  {Image} image The image object to add to the texture
            * @return {WebGLTexture} The texture object
            */
            addTexture(name, type, image, liveUpdate = false) {

                var texture = this._ctx.createTexture();
                this._ctx.pixelStorei(this._ctx.UNPACK_FLIP_Y_WEBGL, true);
                this._ctx.bindTexture(this._ctx.TEXTURE_2D, texture);

                // this._ctx.generateMipmap(this._ctx.TEXTURE_2D);

                // Set the parameters based on the passed type
                if (type === WTCGL.IMAGETYPE_MIRROR) {
                    this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_WRAP_S, this._ctx.MIRRORED_REPEAT);
                    this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_WRAP_T, this._ctx.MIRRORED_REPEAT);
                } else if (type === WTCGL.IMAGETYPE_REGULAR) {
                    this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_WRAP_S, this._ctx.CLAMP_TO_EDGE);
                    this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_WRAP_T, this._ctx.CLAMP_TO_EDGE);
                }

                this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_MIN_FILTER, this._ctx.LINEAR);
                // this._ctx.texParameteri(this._ctx.TEXTURE_2D, this._ctx.TEXTURE_MAG_FILTER, this._ctx.LINEAR);

                // Upload the image into the texture.
                this._ctx.texImage2D(this._ctx.TEXTURE_2D, 0, this._ctx.RGBA, this._ctx.RGBA, this._ctx.UNSIGNED_BYTE, image);

                // add the texture to the array of textures.
                this.pushTexture(name, texture, image, this._ctx.TEXTURE_2D, liveUpdate);


                return texture;
            }

            pushTexture(name, texture, image, target, liveUpdate = false) {
                let textures = this.textures;

                textures.push({
                    name: name, tex: .........完整代码请登录后点击上方下载按钮下载查看

网友评论0