python pytorch使用LSTM通过正弦函数值来预测余弦函数的值分布代码
代码语言:python
所属分类:人工智能
代码描述:python pytorch使用LSTM通过正弦函数值来预测余弦函数的值分布代码,我们取正弦函数的值作为LSTM的输入,来预测余弦函数的值。基于Pytorch来构建LSTM模型,采用1个输入神经元,1个输出神经元,16个隐藏神经元作为LSTM网络的构成参数,平均绝对误差(LMSE)作为损失误差,使用Adam优化算法来训练LSTM神经网络。
代码标签: python pytorch LSTM 正弦 函数 预测 余弦 函数 分布代
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
#!/usr/local/python3/bin/python3 # -*- coding: utf-8 -* import numpy as np import torch from torch import nn import matplotlib.pyplot as plt # Define LSTM Neural Networks class LstmRNN(nn.Module): """ Parameters: - input_size: feature size - hidden_size: number of hidden units - output_size: number of output - num_layers: layers of LSTM to stack """ def __init__(self, input_size, hidden_size=1, output_size=1, num_layers=1): super().__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers) # utilize the LSTM model in torch.nn self.forwardCalculation = nn.Linear(hidden_size, output_size) def forward(self, _x): x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) x = x.view(s*b, h) x = self.forwardCalculation(x) .........完整代码请登录后点击上方下载按钮下载查看
网友评论0