three实现无数三维爱心跳动表白动画效果代码

代码语言:html

所属分类:表白

代码描述:three实现无数三维爱心跳动表白动画效果代码

代码标签: three 三维 爱心 跳动 表白 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >
<head>
<style>
    body {
  margin: 0;
  padding: 0;
}

#container {
  left: 50%;
  position: fixed;
  transform: translate(-50%, -50%);
  top: 50%;
}
</style>

</head>
<body>
<script type="text/javascript" src="//repo.bfw.wiki/bfwrepo/js/three.88.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    void main() {
        gl_Position = vec4( position, 1.0 );
    }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
    uniform vec2 u_resolution;
    uniform float u_time;
    uniform vec2 u_mouse;
  
    const int octaves = 2;
    const float seed = 43758.5453123;
    const float seed2 = 73156.8473192;
    // Epsilon value
    const float eps = 0.005;
  
    const vec3 ambientLight = 0.99 * vec3(1.0, 1.0, 1.0);
    const vec3 light1Pos = vec3(10., 5.0, -25.0);
    const vec3 light1Intensity = vec3(0.35);
    const vec3 light2Pos = vec3(-20., -25.0, 85.0);
    const vec3 light2Intensity = vec3(0.2);
  
    // movement variables
    vec3 movement = vec3(.0);

    // Gloable variables for the raymarching algorithm.
    const int maxIterations = 256;
    const int maxIterationsShad = 16;
    const float stepScale = .7;
    const float stopThreshold = 0.001;
  
  
  mat4 rotationMatrix(vec3 axis, float angle)
  {
      axis = normalize(axis);
      float s = sin(angle);
      float c = cos(angle);
      float oc = 1.0 - c;

      return mat4(oc * axis.x * axis.x + c,           oc * axis.x * axis.y - axis.z * s,  oc * axis.z * axis.x + axis.y * s,  0.0,
                  oc * axis.x * axis.y + axis.z * s,  oc * axis.y * axis.y + c,           oc * axis.y * axis.z - axis.x * s,  0.0,
                  oc * axis.z * axis.x - axis.y * s,  oc * axis.y * axis.z + axis.x * s,  oc * axis.z * axis.z + c,           0.0,
                  0.0,                                0.0,                                0.0,                                1.0);
  }
  
  
  float length2( vec2 p )
  {
    return sqrt( p.x*p.x + p.y*p.y );
  }

  float length6( vec2 p )
  {
    p = p*p*p; p = p*p;
    return pow( p.x + p.y, 1.0/6.0 );
  }

  float length8( vec2 p )
  {
    p = p*p; p = p*p; p = p*p;
    return pow( p.x + p.y, 1.0/8.0 );
  }
  
  // Distance function primitives
  // Reference: http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
  float sdBox( vec3 p, vec3 b )
  {
    vec3 d = abs(p) - b;
    return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
  }
  float udBox( vec3 p, vec3 b )
  {
    return length(max(abs(p)-b,0.0));
  }
  float udRoundBox( vec3 p, vec3 b, float r )
  {
    return length(max(abs(p)-b,0.0))-r;
  }
  float sdSphere( vec3 p, float s )
  {
    return length(p)-s;
  }
  float sdCylinder( vec3 p, vec3 c )
  {
    return length(p.xz-c.xy)-c.z;
  }
  float sdCappedCylinder( vec3 p, vec2 h )
  {
    vec2 d = abs(vec2(length(p.xz),p.y)) - h;
    return min(max(d.x,d.y),0.0) + length(max(d,0.0));
  }
  float sdTorus82( vec3 p, vec2 t )
  {
    vec2 q = vec2(length2(p.xz)-t.x,p.y);
    return length8(q)-t.y;
  }
  float sdPlane( vec3 p)
  {
    return p.y;
  }
  
  // smooth min
  // reference: http://iquilezles.org/www/articles/smin/smin.htm
  float smin(float a, float b, float k) {
      float res = exp(-k*a) + exp(-k*b);
      return -log(res)/k;
  }
  
  vec3 random3( vec3 p ) {
      return fract(sin(vec3(dot(p,vec3(127.1,311.7,319.8)),dot(p,vec3(269.5,183.3, 415.2)),dot(p,vec3(362.9,201.5,134.7))))*43758.5453);
  }
  vec2 random2( vec2 p ) {
      return fract(sin(vec2(dot(p,vec2(127.1,311.7)),dot(p,vec2(269.5,183.3))))*43758.5453);
  }
  
  // The world!
  float world_sdf(in vec3 p) {
    float world = 10.;
    
    vec3 grid = floor(p);
    vec2 rand = random2(grid.xy);
    // if(mod(grid.x + grid.y, 2.) == 0.) {
    //   return 1.;
    // }
    p.z += u_time * rand.x;
    
    float time = u_time + 20.*random2(floor(p.xz)).x;
    
    p = mod(p, 1.0) - .5;
    
    p.y = p.y - abs(p.x) * (2. - abs(p.x))  / 3.;
    
    world = sdSphere(p, .3 + -abs(sin(time + cos(time))) * .1);
    // world = smin(world, world, 1.5);
    
    return world;
  }
  
  // Fuck yeah, normals!
  vec3 calculate_normal(in vec3 p)
  {
    const vec3 small_step = vec3(0.0001, 0.0, 0.0);
    
    float gradient_x = world_sdf(vec3(p.x + eps, p.y, p.z)) - world_sdf(vec3(p.x - eps, p.y, p.z));
    float gradient_y = world_sdf(vec3(p.x, p.y + eps, p.z)) - world_sdf(vec3(p.x, p.y - eps, p.z));
    float gradient_z = world_sdf(vec3(p.x, p.y, p.z  + eps)) - world_sdf(ve.........完整代码请登录后点击上方下载按钮下载查看

网友评论0