three+webgl实现炫酷光影动画效果代码

代码语言:html

所属分类:动画

代码描述:three+webgl实现炫酷光影动画效果代码

代码标签: three webgl 炫酷 光影 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">
  

  
  
  
<style>
body{
		margin:0;
		overflow:hidden;
		background-color:#000;
}
canvas{
		background-color:#000;
}
a{
  position:absolute;
  bottom:20px;
  right:20px;
  color:#ccc;
  text-decoration:none;
  font-family:Arial;
  font-size:10px;
}
</style>


</head>

<body>
  <canvas id="main"></canvas>



	<script type="x-shader/x-vertex" id="vertexshader">
		//
		// GLSL textureless classic 3D noise "cnoise",
		// with an RSL-style periodic variant "pnoise".
		// Author:  Stefan Gustavson (stefan.gustavson@liu.se)
		// Version: 2011-10-11
		//
		// Many thanks to Ian McEwan of Ashima Arts for the
		// ideas for permutation and gradient selection.
		//
		// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
		// Distributed under the MIT license. See LICENSE file.
		// https://github.com/ashima/webgl-noise
		//
		vec3 mod289(vec3 x)
		{
		  return x - floor(x * (1.0 / 289.0)) * 289.0;
		}
		vec4 mod289(vec4 x)
		{
		  return x - floor(x * (1.0 / 289.0)) * 289.0;
		}
		vec4 permute(vec4 x)
		{
		  return mod289(((x*34.0)+1.0)*x);
		}
		vec4 taylorInvSqrt(vec4 r)
		{
		  return 1.79284291400159 - 0.85373472095314 * r;
		}
		vec3 fade(vec3 t) {
		  return t*t*t*(t*(t*6.0-15.0)+10.0);
		}

		// Classic Perlin noise
		float cnoise(vec3 P)
		{
		  vec3 Pi0 = floor(P); // Integer part for indexing
		  vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
		  Pi0 = mod289(Pi0);
		  Pi1 = mod289(Pi1);
		  vec3 Pf0 = fract(P); // Fractional part for interpolation
		  vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
		  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
		  vec4 iy = vec4(Pi0.yy, Pi1.yy);
		  vec4 iz0 = Pi0.zzzz;
		  vec4 iz1 = Pi1.zzzz;
		  vec4 ixy = permute(permute(ix) + iy);
		  vec4 ixy0 = permute(ixy + iz0);
		  vec4 ixy1 = permute(ixy + iz1);
		  vec4 gx0 = ixy0 * (1.0 / 7.0);
		  vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
		  gx0 = fract(gx0);
		  vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
		  vec4 sz0 = step(gz0, vec4(0.0));
		  gx0 -= sz0 * (step(0.0, gx0) - 0.5);
		  gy0 -= sz0 * (step(0.0, gy0) - 0.5);
		  vec4 gx1 = ixy1 * (1.0 / 7.0);
		  vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
		  gx1 = fract(gx1);
		  vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
		  vec4 sz1 = step(gz1, vec4(0.0));
		  gx1 -= sz1 * (step(0.0, gx1) - 0.5);
		  gy1 -= sz1 * (step(0.0, gy1) - 0.5);
		  vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
		  vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
		  vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
		  vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
		  vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
		  vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
		  vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
		  vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
		  vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
		  g000 *= norm0.x;
		  g010 *= norm0.y;
		  g100 *= norm0.z;
		  g110 *= norm0.w;
		  vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
		  g001 *= norm1.x;
		  g011 *= norm1.y;
		  g101 *= norm1.z;
		  g111 *= norm1.w;
		  float n000 = dot(g000, Pf0);
		  float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
		  float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
		  float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
		  float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
		  float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
		  float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
		  float n111 = dot(g111, Pf1);
		  vec3 fade_xyz = fade(Pf0);
		  vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
		  vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
		  float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
		  return 2.2 * n_xyz;
		}
		// Classic Perlin noise, periodic variant
		float pnoise(vec3 P, vec3 rep)
		{
		  vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
		  vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
		  Pi0 = mod289(Pi0);
		  Pi1 = mod289(Pi1);
		  vec3 Pf0 = fract(P); // Fractional part for interpolation
		  vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
		  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
		  vec4 iy = vec4(Pi0.yy, Pi1.yy);
		  vec4 iz0 = Pi0.zzzz;
		  vec4 iz1 = Pi1.zzzz;
		  vec4 ixy = permute(permute(ix) + iy);
		  vec4 ixy0 = permute(ixy + iz0);
		  vec4 ixy1 = permute(ixy + iz1);
		  vec4 gx0 = ixy0 * (1.0 / 7.0);
		  vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
		  gx0 = fract(gx0);
		  vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
		  vec4 sz0 = step(gz0, vec4(0.0));
		  gx0 -= sz0 * (step(0.0, gx0) - 0.5);
		  gy0 -= sz0 * (step(0.0, gy0) - 0.5);
		  vec4 gx1 = ixy1 * (1.0 / 7.0);
		  vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
		  gx1 = fract(gx1);
		  vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
		  vec4 sz1 = step(gz1, vec4(0.0));
		  gx1 -= sz1 * (step(0.0, gx1) - 0.5);
		  gy1 -= sz1 * (step(0.0, gy1) - 0.5);
		  vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
		  vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
		  vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
		  vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
		  vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
		  vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
		  vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
		  vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
		  vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
		  g000 *= norm0.x;
		  g010 *= norm0.y;
		  g100 *= norm0.z;
		  g110 *= norm0.w;
		  vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
		  g001 *= norm1.x;
		  g011 *= norm1.y;
		  g101 *= norm1.z;
		  g111 *= norm1.w;
		  float n000 = dot(g000, Pf0);
		  float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
		  float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
		  float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
		  float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
		  float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
		  float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
		  float n111 = dot(g111, Pf1);
		  vec3 fade_xyz = fade(Pf0);
		  vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
		  vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
		  float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
		  return 2.2 * n_xyz;
		}

		float turbulence( vec3 p ) {
		    float w = 100.0;
		    float t = -.5;
		    for (float f = 1.0 ; f <= 10.0 ; f++ ){
		        floa.........完整代码请登录后点击上方下载按钮下载查看

网友评论0