python使用keras基于seq2seq实现人工智能中文聊天机器人代码
代码语言:python
所属分类:人工智能
代码描述:python使用keras基于seq2seq实现人工智能中文聊天机器人代码
代码标签: python keras seq2seq 人工 智能 中文 聊天 机器人 代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
#!/usr/local/python3/bin/python3 # -*- coding: utf-8 -* from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense import numpy as np import pandas as pd # 定义模型超参数、迭代次数、语料路径 #Batch size 的大小 batch_size = 32 # 迭代次数epochs epochs = 100 # 编码空间的维度Latent dimensionality latent_dim = 256 # 要训练的样本数 num_samples = 9 #设置语料的路径 data_path = '/data/wwwroot/default/dataset/ask/askbot.txt' # 把语料向量化 input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('\n') for line in lines[: min(num_samples, len(lines))]: # print(line) input_text, target_text = line.split('|') target_text = target_text[0:100] target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. for t, char in enumerate(target_text): # decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1. if t > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[i, t - 1, target_token_index[char]] = 1. # LSTM_Seq2Seq 模型定义、训练和保存 encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # 输出 `encoder_outputs` encoder_states = [state_h, state_c] # 状态 `encoder_states` decoder_inputs = Input(shape=(None, num_decoder_tokens)) decoder_lstm = LSTM(lat.........完整代码请登录后点击上方下载按钮下载查看
网友评论0