canvas实现剖面线三角形效果代码
代码语言:html
所属分类:其他
代码描述:canvas实现剖面线三角形效果代码,点击可产生新的图案。
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <style> body { font-family: Arial, Helvetica, "Liberation Sans", FreeSans, sans-serif; background-color: #000; margin: 0; padding: 0; border-width: 0; } #explain { position: absolute; left: 50%; transform: translateX(-50%); bottom: 10px; background-color: rgba(255, 255, 255, 0.9); border: 1px solid black; border-radius: 10px; padding: 10px; color: black; z-index: 1; } .hidden { display: none; } #explain p.buttline { text-align: center; } </style> </head> <body > <div id=explain> <div id="txtexplain"></div> <p class=buttline><button type="button" id="butt2">next >></button> <button type="button" id="butt3">skip it all</button></p> </div> <script> "use strict"; window.addEventListener("load", function () { let triWidth, triHeight; // length of triangle side and altitude let firstRun = !location.pathname.includes("/fullcpgrid/"); let canv, ctx; // canvas and context let maxx, maxy, lRef; // canvas dimensions (lRef is average) let grid; let nbx, nby; let hnbx, hnby; // number of triangles in the half of the width, height of the canvas let blocks, nbLines; let events; // shortcuts for Math. const mrandom = Math.random; const mfloor = Math.floor; const mround = Math.round; const mceil = Math.ceil; const mabs = Math.abs; const mmin = Math.min; const mmax = Math.max; const mPI = Math.PI; const mPIS2 = Math.PI / 2; const m2PI = Math.PI * 2; const msin = Math.sin; const mcos = Math.cos; const matan2 = Math.atan2; const mhypot = Math.hypot; const msqrt = Math.sqrt; const rac3 = msqrt(3); const rac3s2 = rac3 / 2; const mPIS3 = Math.PI / 3; //------------------------------------------------------------------------ function alea(mini, maxi) { // random number in given range if (typeof maxi == "undefined") return mini * mrandom(); // range 0..mini return mini + mrandom() * (maxi - mini); // range mini..maxi } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function intAlea(mini, maxi) { // random integer in given range (mini..maxi - 1 or 0..mini - 1) // if (typeof maxi == "undefined") return mfloor(mini * mrandom()); // range 0..mini - 1 return mini + mfloor(mrandom() * (maxi - mini)); // range mini .. maxi - 1 } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function arrayShuffle(array) { /* randomly changes the order of items in an array only the order is modified, not the elements */ let k1, temp; for (let k = array.length - 1; k >= 1; --k) { k1 = intAlea(0, k + 1); temp = array[k]; array[k] = array[k1]; array[k1] = temp; } // for k return array; } // arrayShuffle // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - /* returns lerp point between p0 and p1, alpha = 0 will return p0, alpha = 1 will return p1 values of alpha outside [0,1] may be used to compute points outside the p0-p1 segment */ function lerp(p0, p1, alpha) { return { x: (1 - alpha) * p0.x + alpha * p1.x, y: (1 - alpha) * p0.y + alpha * p1.y }; } // function lerp //------------------------------------------------------------------------ function addP(text) { let p = document.createElement("p"); p.append(text); txtexplain.append(p); } //------------------------------------------------------------------------ class Triangle { /* numbering of vertices / edges 0 2---1---1 / \ \ / 2 0 2 0 / \ \ / 2---1---1 0 */ constructor(kx, ky) { this.kx = kx; this.ky = ky; this.kxc = kx - hnbx; this.kyc = ky - hnby; this.upsideDown = this.kxc + this.kyc & 1; // 0 or 1 this.setXY(); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setXY() { let xa, ya, vertices, deltay, upsideDown; // centre of this triangle (middle of height, not gravity centre) this.ya = ya = maxy / 2 + this.kyc * triHeight; this.xa = xa = maxx / 2 + this.kxc * triWidth / 2; this.vertices = vertices = []; deltay = triHeight / 2; if (this.upsideDown) deltay = -deltay; vertices[0] = { x: xa, y: ya - deltay }; vertices[1] = { x: xa + triWidth / 2, y: ya + deltay }; vertices[2] = { x: xa - triWidth / 2, y: ya + deltay }; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setBase(side) { // where side is 0,1,2 this.base = side; // which side is the base ? this.dirBase = [ [0, 1, 2], [2, 1, 0]][ this.upsideDown][this.base]; // orientation of base (== base side number for normally oriented triangle) } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setNeighbors() { /* to be called only after the whole grid has been created */ let kx, ky; this.neighbors = []; for (let k = 0; k < 3; ++k) { kx = this.kx + [1, 0, -1][k]; ky = this.ky + [ [0, 1, 0], [0, -1, 0]][ this.upsideDown][k]; this.neighbors[k] = kx < 0 || kx >= nbx || ky < 0 || ky >= nby ? false : grid[ky][kx]; } // for k } // Triangle.setNeighbor // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setOneaab(side, value) { // sets value of this.aab[side] and the matching neighbor (if any) too // sets the "base" property to this side if value is 1 this.aab[side] = value; if (this.neighbors[side]) { this.neighbors[side].aab[2 - side] = value; } if (value == 1) { this.setBase(side); if (this.neighbors[side]) { this.neighbors[side].setBase(2 - side); } } } setaab() { /* sets 3 values of this.aab, taking into account the already filled values and the constraints relative to the neighborhood */ let neigh, possible, choice; const zeroes = []; const ones = []; const empty = []; // count 1s and 0s already present for (let k = 0; k < 3; ++k) { if (this.aab[k] === 0) zeroes.push(k);else if (this.aab[k] === 1) ones.push(k);else empty.push(k); } if (empty.length == 0) { // already completed if (ones.length != 1) throw "wtf ???"; return; // already completed, ok } if (ones.length > 1) throw "wtf ???"; if (ones.length == 1) { // already a 1, no choice empty.forEach(s => this.setOneaab(s, 0)); return; } // no "1" already present. Check empty edges to check if 1 are possible possible = []; empty.forEach(s => { neigh = this.neighbors[s]; if (!neigh || !neigh.aab.includes(1)) possible.push(s); }); if (possible.length == 0) throw "impossible to add a 1"; choice = possible[intAlea(possible.length)]; this.setOneaab(choice, 1); empty.splice(empty.indexOf(choice), 1); // fill the rest with 0 while (empty.length > 0) { choice = empty.pop(); this.setOneaab(choice, 0); } } // setaab // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - drawaab(lineWidth, opacity) { ctx.beginPath(); this.aab.forEach((v, k) => { ctx.beginPath(); ctx.moveTo(this.vertices[k].x, this.vertices[k].y); ctx.lineTo(this.vertices[(k + 1) % 3].x, this.vertices[(k + 1) % 3].y); ctx.lineWidth = lineWidth; ctx.strokeStyle = `hsla(${[120, 0][v]},100%,50%,${opacity})`; ctx.stroke(); }); } // draw aab // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hatchaab(alpha, hue, lineWidth, lum = 50) { // for alpha = 0..1 const pa = lerp(this.vertices[this.a], this.vertices[this.b], alpha); const pb = lerp(this.vertices[this.c], this.vertices[this.b], alpha); ctx.beginPath(); ctx.moveTo(pa.x, pa.y); ctx.lineTo(pb.x, pb.y); ctx.lineWidth = lineWidth; ctx.strokeStyle = `hsl(${hue},100%,${lum}%)`; ctx.stroke(); }} // class Triangle //------------------------------------------------------------------------ function createGrid() { let kx1, ky1, cell; let stackDist = []; grid = []; for (let ky = 0; ky < nby; ++ky) { grid[ky] = []; for (let kx = 0; kx < nbx; ++kx) { grid[ky][kx] = new Triangle(kx, ky); } // for kx } // for ky grid.forEach(line => line.forEach(tri => tri.setNeighbors())); grid.forEach(line => line.forEach(tri => tri.aab = [])); grid.forEach(line => line.forEach(tri => tri.setaab())); } // createGrid //------------------------------------------------------------------------ function createBlock(tri, side) { if (tri.block) return false; // already belongs to a block : forget const initTri = tri; let nextTri; const block = []; while (true) { block.push(tri); tri.entry = side; tri.exit = tri.aab.findIndex((v, k) => k != tri.entry && v == 0); tri.block = block; /* fetch next triangle - if any */ nextTri = tri.neighbors[tri.exit]; if (nextTri === false) { block.closed = false; return block; // finished open path } if (nextTri === initTri) { block.closed = true; return block; // finished closed } side = 2 - tri.exit; tri = nextTri; } // while } // createBlock //------------------------------------------------------------------------ function createBlocks() { blocks = []; let block; // create all opened paths (begining on edge) grid.forEach((line) => line.forEach(tri => { if (tri.block) return; // already belongs to a block let ext = []; tri.neighbors.forEach((v, k) => { if (v === false && tri.aab[k] == 0) ext.push(k); }); if (ext.length == 0) return; // not on external side, ignore block = createBlock(tri, ext[intAlea(ext.length)]); if (block) blocks.push(block); })); // create all closed paths grid.forEach((line) => line.forEach(tri => { if (tri.block) return; // already belongs to a block block = createBlock( tri, tri.aab.findIndex(v => v === 0)); if (block) blocks.push(block); })); blocks.forEach(orientBlock); blocks.forEach(block => block.hue = intAlea(360)); } //------------------------------------------------------------------------ function orientBlock(block) { block.forEach((tri, k) => { if ((tri.entry + 1) % 3 == tri.base) { tri.a = (tri.entry + 1) % 3; // base point of entry tri.b = tri.entry; // summit tri.c = (tri.entry + 2) % 3; // base point of exit } else { tri.a = tri.entry; // base point of entry tri.b = (tri.entry + 1) % 3; // summit tri.c = (tri.entry + 2) % 3; // base point of exit } let ntri = block[(k + 1) % block.length]; tri.invertAlpha = ntri.dirBase == tri.dirBase; }); // block } // orientBlock //------------------------------------------------------------------------ function drawBlock(block, alpha, hue, light, widthCoeff = 1) { const tri = block[0]; let pint0; let pa = lerp(tri.vertices[tri.a], tri.vertices[tri.b], alpha); let pts = [pa]; let pint; block.forEach(tri => { pts.push(lerp(tri.vertices[tri.c], tri.vertices[tri.b], alpha)); if (tri.invertAlpha) alpha = 1 - alpha; }); ctx.beginPath(); pts.forEach((p, k) => { if (k == 0) { pint0 = pint = lerp(p, pts[1], 0.5); if (block.closed) { ctx.moveTo(pint.x, pint.y); } else { ctx.moveTo(pa.x, pa.y); ctx.lineTo(pint.x, pint.y); } } else if (k == pts.length - 1) { if (block.closed) { ctx.quadraticCurveTo(pa.x, pa.y, pint0.x, pint0.y); ctx.closePath(); } else ctx.lineTo(p.x, p.y); } else { pint = lerp(p, pts[k + 1], 0.5); ctx.quadraticCurveTo(p.x, p.y, pint.x, pint.y); } }); const lw = 3 + (triHeight / nbLines - 3) * widthCoeff; // (width 3 for coeff 0) for (let l = lw; l > 0; --l) { ctx.lineWidth = l; ctx.strokeStyle = `hsl(${hue},100%,${20 + (light - 20) * (1 - l / lw)}%)`; ctx.stroke(); } } // drawBlock //------------------------------------------------------------------------ //------------------------------------------------------------------------ function drawBlockRounded(block, alpha, hue, light, round) { /* similiar to drawBlock, the round parameter determines how corners are rounded, from 0(angular) to 1 (totally rounded) and no glossy effect is applied */ const tri = block[0]; let pint0; let pa = lerp(tri.vertices[tri.a], tri.vertices[tri.b], alpha); let pts = [pa]; let pinta, pintb; block.forEach(tri => { pts.push(lerp(tri.vertices[tri.c], tri.vertices[tri.b], alpha)); if (tri.invertAlpha) alpha = 1 - alpha; }); ctx.beginPath(); pts.forEach((p, k) => { if (k == 0) { pint0 = p.........完整代码请登录后点击上方下载按钮下载查看
网友评论0