canvas实现炫酷泡泡穿透彩色弹珠爆炸粒子动画效果代码

代码语言:html

所属分类:粒子

代码描述:canvas实现炫酷泡泡穿透彩色弹珠爆炸粒子动画效果代码

代码标签: canvas 炫酷 泡泡 穿透 彩色 弹珠 爆炸 粒子 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >
<head>
  <meta charset="UTF-8">

<style>
    body, html{
  margin: 0;
  height: 100vh;
  background: linear-gradient(-45deg, #204, #000);
  overflow: hidden;
}
#c{
  border: 3px solid #0Ff3;
  position: absolute;
  background: #04f1;
  left: 50%;
  top: 50%;
  border-radius: 10px;
  transform: translate(-50%, -50%);
}
</style>
</head>
<body>

<canvas id=c></canvas>
<!-- partial -->
  <script >
      c = document.querySelector('#c')
c.width = 1920
c.height = 1080
x = c.getContext('2d')
C = Math.cos
S = Math.sin
t = 0
T = Math.tan

rsz = window.onresize = () =>{
  let b = document.body
  let margin = 10
  let n
  let d = .5625
  if(b.clientHeight/b.clientWidth > d){
    c.style.width = `${(n=b.clientWidth) - margin*2}px`
    c.style.height = `${n*d - margin*2}px`
  }else{
    c.style.height = `${(n=b.clientHeight) - margin*2}px`
    c.style.width = `${n/d - margin*2}px`
  }
}

rsz()

async function Draw(){
  if(!t){
    oX = oY = oZ = 0
    Rn = Math.random
    R = (Rl,Pt,Yw,m) => {
      let p
      M = Math
      A = M.atan2
      H = M.hypot
      X = S(p=A(X,Z)+Yw) * (d=H(X,Z))
      Z = C(p)*d
      X = S(p=A(X,Y)+Rl) * (d=H(X,Y))
      Y = C(p) * d
      Y = S(p=A(Y,Z)+Pt) * (d=H(Y,Z))
      Z = C(p)*d
      if(m){
        X+=oX
        Y+=oY
        Z+=oZ
      }
    }
    
    R2=(Rl,Pt,Yw,m=false)=>{
      M=Math
      A=M.atan2
      H=M.hypot
      if(m){
        X-=oX
        Y-=oY
        Z-=oZ
      }
      X=S(p=A(X,Y)+Rl)*(d=H(X,Y))
      Y=C(p)*d
      Y=S(p=A(Y,Z)+Pt)*(d=H(Y,Z))
      Z=C(p)*d
      X=S(p=A(X,Z)+Yw)*(d=H(X,Z))
      Z=C(p)*d
    }

    Q = () => [c.width/2+X/Z*900, c.height/2+Y/Z*900]
    I=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0
    
    Normal = (facet, autoFlipNormals=false, X1=0, Y1=0, Z1=0) => {
      let ax = 0, ay = 0, az = 0
      facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] })
      ax /= facet.length, ay /= facet.length, az /= facet.length
      let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2]
      let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2]
      crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1]
      d = Math.hypot(...crs)+.001
      let nls = 1 //normal line length
      crs = crs.map(q=>q/d*nls)
      let X1_ = ax, Y1_ = ay, Z1_ = az
      let flip = 1
      if(autoFlipNormals){
        let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1)
        let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99))
        flip = d2_>d1_?-1:1
      }
      let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip)
      return [X1_, Y1_, Z1_, X2_, Y2_, Z2_]
    }
      
    async function loadOBJ(url, scale, tx, ty, tz, rl, pt, yw, recenter=true) {
      let res
      await fetch(url, res => res).then(data=>data.text()).then(data=>{
        a=[]
        data.split("\nv ").map(v=>{
          a=[...a, v.split("\n")[0]]
        })
        a=a.filter((v,i)=>i).map(v=>[...v.split(' ').map(n=>(+n.replace("\n", '')))])
        ax=ay=az=0
        a.map(v=>{
          v[1]*=-1
          if(recenter){
            ax+=v[0]
            ay+=v[1]
            az+=v[2]
          }
        })
        ax/=a.length
        ay/=a.length
        az/=a.length
        a.map(v=>{
          X=(v[0]-ax)*scale
          Y=(v[1]-ay)*scale
          Z=(v[2]-az)*scale
          R2(rl,pt,yw,0)
          v[0]=X
          v[1]=Y * (url.indexOf('bug')!=-1?2:1)
          v[2]=Z
        })
        maxY=-6e6
        a.map(v=>{
          if(v[1]>maxY)maxY=v[1]
        })
        a.map(v=>{
          v[1]-=maxY-oY
          v[0]+=tx
          v[1]+=ty
          v[2]+=tz
        })

        b=[]
        data.split("\nf ").map(v=>{
          b=[...b, v.split("\n")[0]]
        })
        b.shift()
        b=b.map(v=>v.split(' '))
        b=b.map(v=>{
          v=v.map(q=>{
            return +q.split('/')[0]
          })
          v=v.filter(q=>q)
          return v
        })

        res=[]
        b.map(v=>{
          e=[]
          v.map(q=>{
            e=[...e, a[q-1]]
          })
          e = e.filter(q=>q)
          res=[...res, e]
        })
      })
      return res
    }

    reflect = (a, n) => {
      let d1 = Math.hypot(...a)+.0001
      let d2 = Math.hypot(...n)+.0001
      a[0]/=d1
      a[1]/=d1
      a[2]/=d1
      n[0]/=d2
      n[1]/=d2
      n[2]/=d2
      let dot = -a[0]*n[0] + -a[1]*n[1] + -a[2]*n[2]
      let rx = -a[0] - 2 * n[0] * dot
      let ry = -a[1] - 2 * n[1] * dot
      let rz = -a[2] - 2 * n[2] * dot
      return [-rx*d1, -ry*d1, -rz*d1]
    }

    geoSphere = (mx, my, mz, iBc, size) => {
      let collapse=0
      let B=Array(iBc).fill().map(v=>{
        X = Rn()-.5
        Y = Rn()-.5
        Z = Rn()-.5
        return  [X,Y,Z]
      })
      for(let m=99;m--;){
        B.map((v,i)=>{
          X = v[0]
          Y = v[1]
          Z = v[2]
          B.map((q,j)=>{
            if(j!=i){
              X2=q[0]
              Y2=q[1]
              Z2=q[2]
              d=1+(Math.hypot(X-X2,Y-Y2,Z-Z2)*(3+iBc/40)*3)**4
              X+=(X-X2)*99/d
              Y+=(Y-Y2)*99/d
              Z+=(Z-Z2)*99/d
            }
          })
          d=Math.hypot(X,Y,Z)
          v[0]=X/d
          v[1]=Y/d
          v[2]=Z/d
          if(collapse){
            d=25+Math.hypot(X,Y,Z)
            v[0]=(X-X/d)/1.1
            v[1]=(Y-Y/d)/1.1         
            v[2]=(Z-Z/d)/1.1
          }
        })
      }
      mind = 6e6
      B.map((v,i)=>{
        X1 = v[0]
        Y1 = v[1]
        Z1 = v[2]
        B.map((q,j)=>{
          X2 = q[0]
          Y2 = q[1]
          Z2 = q[2]
          if(i!=j){
            d = Math.hypot(a=X1-X2, b=Y1-Y2, e=Z1-Z2)
            if(d<mind) mind = d
          }
        })
      })
      a = []
      B.map((v,i)=>{
        X1 = v[0]
        Y1 = v[1]
        Z1 = v[2]
        B.map((q,j)=>{
          X2 = q[0]
          Y2 = q[1]
          Z2 = q[2]
          if(i!=j){
            d = Math.hypot(X1-X2, Y1-Y2, Z1-Z2)
            if(d<mind*2){
              if(!a.filter(q=>q[0]==X2&&q[1]==Y2&&q[2]==Z2&&q[3]==X1&&q[4]==Y1&&q[5]==Z1).length) a = [...a, [X1*size,Y1*size,Z1*size,X2*size,Y2*size,Z2*size]]
            }
          }
        })
      })
      B.map(v=>{
        v[0]*=size
        v[1]*=size
        v[2]*=size
        v[0]+=mx
        v[1]+=my
        v[2]+=mz
      })
      return [mx, my, mz, size, B, a]
    }

    burst = new Image()
    burst.src = "//repo.bfw.wiki/bfwrepo/images/burst/burst.png"

    starsLoaded = false, starImgs = [{loaded: false}]
    starImgs = Array(9).fill().map((v,i) => {
      let a = {img: new Image(), loaded: false}
      a.img.onload = () => {
        a.loaded = true
        setTimeout(()=>{
          if(starImgs.filter(v=>v.loaded).length == 9) starsLoaded = true
        }, 0)
      }
      a.img.src = `//repo.bfw.wiki/bfwrepo/images/burst/star${i+1}.png`
      return a
    })

    lineFaceI = (X1, Y1, Z1, X2, Y2, Z2, facet, autoFlipNormals=false, showNormals=false) => {
      let X_, Y_, Z_, d, m, l_,K,J,L,p
      let I_=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0
      let Q_=()=>[c.width/2+X_/Z_*900,c.height/2+Y_/Z_*900]
      let R_ = (Rl,Pt,Yw,m)=>{
        let M=Math, A=M.atan2, H=M.hypot
        X_=S(p=A(X_,Y_)+Rl)*(d=H(X_,Y_)),Y_=C(p)*d,X_=S(p=A(X_,Z_)+Yw)*(d=H(X_,Z_)),Z_=C(p)*d,Y_=S(p=A(Y_,Z_)+Pt)*(d=H(Y_,Z_)),Z_=C(p)*d
        if(m){ X_+=oX,Y_+=oY,Z_+=oZ }
      }
      let rotSwitch = m =>{
        switch(m){
          case 0: R_(0,0,Math.PI/2); break
          case 1: R_(0,Math.PI/2,0); break
          case 2: R_(Math.PI/2,0,Math.PI/2); break
        }        
      }
      let ax = 0, ay = 0, az = 0
      facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] })
      ax /= facet.length, ay /= facet.length, az /= facet.length
      let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2]
      let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2]
      let crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1]
      d = Math.hypot(...crs)+.001
      let nls = 1 //normal line length
      crs = crs.map(q=>q/d*nls)
      let X1_ = ax, Y1_ = ay, Z1_ = az
      let flip = 1
      if(autoFlipNormals){
        let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1)
        let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99))
        flip = d2_>d1_?-1:1
      }
      let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip)
      if(showNormals){
        x.beginPath()
        X_ = X1_, Y_ = Y1_, Z_ = Z1_
        R_(Rl,Pt,Yw,1)
        if(Z_>0) x.lineTo(...Q_())
        X_ = X2_, Y_ = Y2_, Z_ = Z2_
        R_(Rl,Pt,Yw,1)
        if(Z_>0) x.lineTo(...Q_())
        x.lineWidth = 5
        x.strokeStyle='#f004'
        x.stroke()
      }

      let p1_ = Math.atan2(X2_-X1_,Z2_-Z1_)
      let p2_ = -(Math.acos((Y2_-Y1_)/(Math.hypot(X2_-X1_,Y2_-Y1_,Z2_-Z1_)+.001))+Math.PI/2)
      let isc = false, iscs = [false,false,false]
      X_ = X1, Y_ = Y1, Z_ = Z1
      R_(0,-p2_,-p1_)
      let rx_ = X_, ry_ = Y_, rz_ = Z_
      for(let m=3;m--;){
        if(isc === false){
          X_ = rx_, Y_ = ry_, Z_ = rz_
          rotSwitch(m)
          X1_ = X_, Y1_ = Y_, Z1_ = Z_ = 5, X_ = X2, Y_ = Y2, Z_ = Z2
          R_(0,-p2_,-p1_)
          rotSwitch(m)
          X2_ = X_, Y2_ = Y_, Z2_ = Z_
          facet.map((q_,j_)=>{
            if(isc === false){
              let l = j_
              X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2]
              R_(0,-p2_,-p1_)
              rotSwitch(m)
              let X3_=X_, Y3_=Y_, Z3_=Z_
              l = (j_+1)%facet.length
              X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2]
              R_(0,-p2_,-p1_)
              rotSwitch(m)
              let X4_ = X_, Y4_ = Y_, Z4_ = Z_
              if(l_=I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) iscs[m] = l_
            }
          })
        }
      }
      if(iscs.filter(v=>v!==false).length==3){
        let iscx = iscs[1][0], iscy = iscs[0][1], iscz = iscs[0][0]
        let pointInPoly = true
        ax=0, ay=0, az=0
        facet.map((q_, j_)=>{ ax+=q_[0], ay+=q_[1], az+=q_[2] })
        ax/=facet.length, ay/=facet.length, az/=facet.length
        X_ = ax, Y_ = ay, Z_ = az
        R_(0,-p2_,-p1_)
        X1_ = X_, Y1_ = Y_, Z1_ = Z_
        X2_ = iscx, Y2_ = iscy, Z2_ = iscz
        facet.map((q_,j_)=>{
          if(pointInPoly){
            let l = j_
            X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2]
            R_(0,-p2_,-p1_)
            let X3_ = X_, Y3_ = Y_, Z3_ = Z_
            l = (j_+1)%facet.length
            X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2]
            R_(0,-p2_,-p1_)
            let X4_ = X_, Y4_ = Y_, Z4_ = Z_
            if(I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) pointInPoly = false
          }
        })
        if(pointInPoly){
          X_ = iscx, Y_ = iscy, Z_ = iscz
          R_(0,p2_,0)
          R_(0,0,p1_)
          isc = [[X_,Y_,Z_], [crs[0],crs[1],crs[2]]]
        }
      }
      return isc
    }

    TruncatedOctahedron = ls => {
      let shp = [], a = []
      mind = 6e6
      for(let i=6;i--;){
        X = S(p=Math.PI*2/6*i+Math.PI/6)*ls
        Y = C(p)*ls
        Z = 0
        if(Y<mind) mind = Y
        a = [...a, [X, Y, Z]]
      }
      let theta = .6154797086703867
      a.map(v=>{
        X = v[0]
        Y = v[1] - mind
        Z = v[2]
        R(0,theta,0)
        v[0] = X
        v[1] = Y
        v[2] = Z+1.5
      })
      b = JSON.parse(JSON.stringify(a)).map(v=>{
        v[1] *= -1
        return v
      })
      shp = [...shp, a, b]
      e = JSON.parse(JSON.stringify(shp)).map(v=>{
        v.map(q=>{
          X = q[0]
          Y = q[1]
          Z = q[2]
          R(0,0,Math.PI)
          q[0] = X
          q[1] = Y
          q[2] = Z
        })
        return v
      })
      shp = [...shp, ...e]
      e = JSON.parse(JSON.stringify(shp)).map(v=>{
        v.map(q=>{
          X = q[0]
          Y = q[1]
          Z = q[2]
          R(0,0,Math.PI/2)
          q[0] = X
          q[1] = Y
          q[2] = Z
        })
        return v
      })
      shp = [...shp, ...e]

      coords = [
        [[3,1],[4,3],[4,4],[3,2]],
        [[3,4],[3,3],[2,4],[6,2]],
        [[1,4],[0,3],[0,4],[4,2]],
        [[1,1],[1,2],[6,4],[7,3]],
        [[3,5],[7,5],[1,5],[3,0]],
        [[2,5],[6,5],[0,5],[4,5]]
      ]
      a = []
      coords.map(v=>{
        b = []
        v.map(q=>{
          X = shp[q[0]][q[1]][0]
          Y = shp[q[0]][q[1]][1]
          Z = shp[q[0]][q[1]][2]
          b = [...b, [X,Y,Z]]
        })
        a = [...a, b]
      })
      shp = [...shp, ...a]
      return shp.map(v=>{
        v.map(q=>{
          q[0]/=3
          q[1]/=3
          q[2]/=3
          q[0]*=ls
          q[1]*=ls
          q[2]*=ls
        })
        return v
      })
    }

    Torus = (rw, cl, ls1, ls2, parts=1, twists=0, part_spacing=1.5) => {
     t_ = C(t)*8
     let ret = [], tx=0, ty=0, tz=0, prl1 = 0, p2a = 0, prl2=0, p2b = 0
      tx1=ty1=tz1=tx2=ty2=tz2=0
      for(let m=parts;m--;){
        avgs = Array(rw).fill().map(v=>[0,0,0])
        for(j=rw;j--;)for(let i = cl;i--;){
          if(parts>1){
            ls3 = ls1*part_spacing
            X = S(p=Math.PI*2/parts*m) * ls3
            Y = C(p) * ls3
            Z = 0
            R(prl1 = Math.PI*2/rw*(j-1)*twists+t_,0,0)
            tx1 = X
            ty1 = Y 
            tz1 = Z
            R(0, 0, Math.PI*2/rw*(j-1))
            ax1 = X
            ay1 = Y
            az1 = Z
            X = S(p=Math.PI*2/parts*m) * ls3
            Y = C(p) * ls3
            Z = 0
            R(prl2 = Math.PI*2/rw*(j)*twists+t_,0,0)
            tx2 = X
            ty2 = Y
            tz2 = Z
            R(0, 0, Math.PI*2/rw*j)
            ax2 = X
            ay2 = Y
            az2 = Z
            p1a = Math.atan2(ax2-ax1,az2-az1)
            p2a = Math.PI/2+Math.acos((ay2-ay1)/(Math.hypot(ax2-ax1,ay2-ay1,az2-az1)+.001))

            X = S(p=Math.PI*2/parts*m) * ls3
            Y = C(p) * ls3
            Z = 0
            R(Math.PI*2/rw*(j)*twists+t_,0,0)
            tx1b = X
            ty1b = Y
            tz1b = Z
            R(0, 0, Math.PI*2/rw*j)
            ax1b = X
            ay1b = Y
            az1b = Z
            X = S(p=Math.PI*2/parts*m) * ls3
            Y = C(p) * ls3
            Z = 0
            R(Math.PI*2/rw*(j+1)*twists+t_,0,0)
            tx2b = X
            ty2b = Y
            tz2b = Z
            R(0, 0, Math.PI*2/rw*(j+1))
            ax2b = X
            ay2b = Y
            az2b = Z
            p1b = Math.atan2(ax2b-ax1b,az2b-az1b)
            p2b = Math.PI/2+Math.acos((ay2b-ay1b)/(Math.hypot(ax2b-ax1b,ay2b-ay1b,az2b-az1b)+.001))
          }
          a = []
          X = S(p=Math.PI*2/cl*i) * ls1
          Y = C(p) * ls1
          Z = 0
          //R(0,0,-p1a)
          R(prl1,p2a,0)
          X += ls2 + tx1, Y += ty1, Z += tz1
          R(0, 0, Math.PI*2/rw*j)
          a = [...a, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*(i+1)) * ls1
          Y = C(p) * ls1
          Z = 0
          //R(0,0,-p1a)
          R(prl1,p2a,0)
          X += ls2 + tx1, Y += ty1, Z += tz1
          R(0, 0, Math.PI*2/rw*j)
          a = [...a, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*(i+1)) * ls1
          Y = C(p) * ls1
          Z = 0
          //R(0,0,-p1b)
          R(prl2,p2b,0)
          X += ls2 + tx2, Y += ty2, Z += tz2
          R(0, 0, Math.PI*2/rw*(j+1))
          a = [...a, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*i) * ls1
          Y = C(p) * ls1
          Z = 0
          //R(0,0,-p1b)
          R(prl2,p2b,0)
          X += ls2 + tx2, Y += ty2, Z += tz2
          R(0, 0, Math.PI*2/rw*(j+1))
          a = [...a, [X,Y,Z]]
          ret = [...ret, a]
        }
      }
      return ret
    }

    Cylinder = (rw, cl, ls1, ls2, caps=false) => {
      let a = []
      for(let i=rw;i--;){
        let b = []
        for(let j=cl;j--;){
          X = S(p=Math.PI*2/cl*j) * ls1
          Y = (1/rw*i-.5)*ls2
          Z = C(p) * ls1
          b = [...b, [X,Y,Z]]
        }
        if(caps) a = [...a, b]
        for(let j=cl;j--;){
          b = []
          X = S(p=Math.PI*2/cl*j) * ls1
          Y = (1/rw*i-.5)*ls2
          Z = C(p) * ls1
          b = [...b, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*(j+1)) * ls1
          Y = (1/rw*i-.5)*ls2
          Z = C(p) * ls1
          b = [...b, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*(j+1)) * ls1
          Y = (1/rw*(i+1)-.5)*ls2
          Z = C(p) * ls1
          b = [...b, [X,Y,Z]]
          X = S(p=Math.PI*2/cl*j) * ls1
          Y = (1/rw*(i+1)-.5)*ls2
          Z = C(p) * ls1
          b = [...b, [X,Y,Z]]
          a = [...a, b]
        }
      }
      b = []
      for(let j=cl;j--;){
        X = S(p=Math.PI*2/cl*j) * ls1
        Y = ls2/2
        Z = C(p) * ls1
        //b = [...b, [X,Y,Z]]
      }
      if(caps) a = [...a, b]
      return a
   .........完整代码请登录后点击上方下载按钮下载查看

网友评论0