canvas+webgl实现可修改参数涡旋虫洞穿越动画效果代码
代码语言:html
所属分类:动画
代码描述:canvas+webgl实现可修改参数涡旋虫洞穿越动画效果代码
代码标签: canvas webgl 修改 参数 涡旋 虫洞 穿越 动画
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <style> body { height: 100vh; margin: 0; } body, html, #glcanvas { overflow: hidden } canvas { display: block; width: 100vw; height: 100vh; } </style> </head> <body translate="no"> <canvas id="glcanvas"></canvas> <script id="vertex-shader" type="x-shader/x-vertex"> attribute vec2 a_position; void main() { gl_Position = vec4(a_position, 0.0, 1.0); } </script> <script id="fragment-shader" type="x-shader/x-fragment"> #ifdef GL_ES precision mediump float; #endif uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; uniform bool u_pattern; uniform float u_swirl; uniform float u_detail; uniform float u_rotationSpeed; uniform bool u_warp; uniform float u_warpIntensity; uniform float u_reflection; uniform float u_movementSpeed; uniform float u_color; uniform bool u_highContrast; uniform float u_discard; vec3 palette(float t, float factor) { vec3 a = vec3(0.5) + 0.3 * sin(vec3(0.1, 0.3, 0.5) * factor); vec3 b = vec3(0.5) + 0.3 * cos(vec3(0.2, 0.4, 0.6) * factor); vec3 c = vec3(1.0) + 0.5 * sin(vec3(0.3, 0.7, 0.9) * factor); vec3 d = vec3(0.25, 0.4, 0.55) + 0.2 * cos(vec3(0.5, 0.6, 0.7) * factor); return a + b * cos(6.28318 * (c * t + d)); } vec3 paletteContrasted(float t, float factor) { vec3 a = vec3(0.5) + 0.3 * sin(vec3(0.1, 0.3, 0.5) * factor); vec3 b = vec3(0.5) + 0.3 * cos(vec3(0.2, 0.4, 0.6) * factor); vec3 c = vec3(1.0) + 0.5 * sin(vec3(0.3, 0.7, 0.9) * factor); vec3 d = vec3(0.25, 0.4, 0.55) + 0.2 * cos(vec3(0.5, 0.6, 0.7) * factor); return a + b * tan(6.28318 * (c * t + d)); } float hash(vec3 p) { p = 50.0 * fract(p * 0.3183099 + vec3(0.71, 0.113, 0.5)); return -1.0 + 2.0 * fract(p.x * p.y * p.z * (p.x + p.y + p.z)); } float noiseF(vec3 p) { vec3 i = floor(p); vec3 f = fract(p); float a = hash(i); float b = hash(i + vec3(1.0, 0.0, 0.0)); .........完整代码请登录后点击上方下载按钮下载查看
网友评论0