webgl实现三维3d洞穴效果代码

代码语言:html

所属分类:三维

代码描述:webgl实现三维3d洞穴效果代码

代码标签: 3d 洞穴 效果

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >
<head>
  <meta charset="UTF-8">


</head>
<body>
<!-- partial:index.partial.html -->
<canvas id="webgl" width="500" height="1758"></canvas>

<script id="vertexShader" type="x-shader/x-vertex">
  attribute vec4 a_position;
  
  uniform mat4 u_modelViewMatrix;
  uniform mat4 u_projectionMatrix;
  
  void main() {
    gl_Position = a_position;
  }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
 precision highp float;
  precision highp int;
  
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  
  // movement variables
  vec3 movement = vec3(.0);
  
  const int maxIterations = 256;
  const float stopThreshold = 0.002;
  const float stepScale = .5;
  const float eps = 0.002;
  const vec3 clipColour = vec3(1.);
  const vec3 fogColour = vec3(1.);
  
  const vec3 light1_position = vec3(0, 1., -1.);
  const vec3 light1_colour = vec3(.8, .8, .85);
  
  struct Surface {
    int object_id;
    float distance;
    vec3 position;
    vec3 onsurface_position;
    vec3 colour;
    float steps;
    float ambient;
    float spec;
    float fog;
  };
  
  // Distance function copyright Inigo Quilez
  float opExtrusion( in vec3 p, in float primitive, in float h ) {
      float d = primitive;
      vec2 w = vec2( d, abs(p.z) - h );
      return min(max(w.x,w.y),0.0) + length(max(w,0.0));
  }
  float sdBox( in vec2 p, in vec2 b ) {
      vec2 d = abs(p)-b;
      return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
  }
  
  vec3 path(float z) {
    // return vec3(0,0,0.);
    return vec3(sin(z * .1) * 4., sin(z * .05) * 10., z);
  }
  
  float getBlock(vec3 position, inout int object_id, inout vec3 p) {
    // position.z = fract(position.z) - .5;
    // object_id = int(id);
    float id = float(object_id);
    float r = sin(id * .3 + u_time) * .5;
    r = sin(texture2D(u_noise, vec2((id*2.)/255.)).x * 2. + u_time - id) * .25;
    float rw = texture2D(u_noise, vec2((id*2.)/255.)).x - .5;
    // // position.xy += r;
    float s = sin(r);
    float c = cos(r);
    position.xy *= mat2(c, -s, s, c);
    
    p = position;
    
    float box = sdBox(position.xy, vec2(1.5 + rw, 1.)) * -1.;
    float world = opExtrusion(position, box, .45) - .005;
    // world += smoothstep(.04, 0., abs(sin(p.x * 4.))) * .01;
    // world += smoothstep(.02, 0., abs(sin(p.y * 2.))) * .01;
    return world;
  }
  
  // This function describes the world in distances from any given 3 dimensional point in space
  float world(in vec3 position, inout int object_id, inout vec3 p) {
    
    position.xy -= path(position.z).xy;
    
    float id = floor(position.z);
    position.z = fract(position.z) - .5;
    
    int oid1 = int(id);
    vec3 p1;
    float block1 = getBlock(position, oid1, p1);
    int oid2 = int(id+1.);
    vec3 p2;
    float block2 = getBlock(position + vec3(0,0,-1), oid2, p2);
    
    object_id = oid1;
    p = p1;
    
    if(block2 < block1) {
      block1 = block2;
      object_id = oid2;
      p = p2;
    }
    
    return block1;
  }
  float world(in vec3 position, inout int object_id) {
    vec3 p;
    return world(position, object_id, p);
  }
  float world(in vec3 position) {
    int dummy = 0;
    return world(position, dummy);
  }
  
  Surface getSurface(int object_id, float rayDepth, vec3 sp, float steps, vec3 onsurface_pos, float fog) {
    return Surface(
      object_id, 
      rayDepth, 
      sp, 
      onsurface_pos,
      vec3(1.), 
      steps,
      .5, 
      1000.,
      fog);
  }
  
  // The raymarch loop
  Surface rayMarch(vec3 ro, vec3 rd, float start, float end) {
    float sceneDist = 1e4;
    float rayDepth = start;
    int object_id = 0;
    float steps = 0.;
    float fog = 0.;
    vec3 p;
    for(int i = 0; i < maxIterations; i++) {
      sceneDist = world(ro + rd * rayDepth, object_id, p);
      rd += (texture2D(u_noise, (p.xy)*255.).rgb-.5)*.0005;
      steps++;
      fog += max(sceneDist, 0.);
      
      if(sceneDist < stopThreshold || rayDepth > end) {
        break;
      }
      
      rayDepth += sceneDist * stepScale;
    }
    
    return getSurface(object_id, rayDepth, ro + rd * rayDepth, steps, p, fog);
  }
  
  // Calculated the normal of any given point in space. Intended to be cast from the point of a surface
  vec3 calculate_normal(in vec3 position) {
    vec3 grad = vec3(
      world(vec3(position.x + eps, position.y, position.z)) - world(vec3(position.x - eps, position.y, position.z)),
      world(vec3(position.x, position.y + eps, position.z)) - world(vec3(position.x, position.y - eps, position.z)),
      world(vec3(position.x, position.y, position.z + eps)) - world(vec3(position.x, position.y, position.z - eps))
    );
    
    return normalize(grad);
  }
  
  vec3 lighting(Surface surface_object, vec3 cam) {
    
    // start with black
    vec3 sceneColour = vec3(0);
    
    // Surface normal
    vec3 normal = calculate_normal(surface_object.position);
    normal += smoothstep(.02, 0., abs(sin(surface_object.onsurface_position.x * 4.))) * .5;
    normal += smoothstep(.01, 0., abs(sin(surface_object.onsurface_position.y * 2.))) * .5;
    
    // Light position
    vec3 lp = path(u_time*3.+15.);
    // Light direction
    vec3 ld = lp - surface_object.position;
    
    // light attenuation
    // For brightly lit scenes or global illumination (like sunlit), this can be limited to just normalizing the ld
    float len = length( ld );
    ld = normalize(ld);
    float lightAtten = min( 1.0 / ( 0.15*len ), 1.0 );
    lightAtten = 1.;
    
    // The surface's light reflection normal
    vec3 reflection_normal = reflect(-ld, normal);
    
    // Ambient Occlusion
    
    float ao = (surface_object.steps*.01*(1./(surface_object.fog*.07)));
    ao *= ao*2.;
    ao = clamp(
      ((1.-ao)+.3)
      , 0., 1.);
    // ao -= surface_object.steps*.005;
    
    // Object surface properties
    float diffuse = max(0., dot(normal, ld));
    float specular = max(0., dot( reflection_normal, normalize(cam - surface_object.position) ));
    
    // Bringing all of the lighting components together
    vec3 tp = surface_object.onsurface_position * 2.;
    vec3 c = texture2D(u_noise, tp.xy + tp.zx).rrr + texture2D(u_noise, tp.zy + tp.yx).rrr;
    tp = surface_object.onsurface_position * vec3(.8, .8, 1.);
    c += texture2D(u_noise, tp.xy + tp.zx).rrr + texture2D(u_noise, tp.zy + tp.yx).rrr;
    tp = surface_object.onsurface_position * vec3(1., .4, .4);
    c += texture2D(u_noise, tp.xy + tp.zx).rrr + texture2D(u_noise, tp.zy + tp.yx).rrr;
    c *= .125;
    c *= .5 + .5;
    c *=  vec3(1,.98,.90);
    sceneColour += ( c * (diffuse + specular )) * light1_colour * lightAtten * ao;
    
    // adding fog
    float fogl = surface_object.fog*.04;
    fogl *= smoothstep(-.5, 1.8, fogl);
    sceneColour = mix( sceneColour, fogColour, fogl );
    
    return sceneColour;
  }

  void main() {
    vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    
    float t = u_time * 3.;
    
    // movement
    movement = path(t);
    
    // Camera and look-at
    vec3 cam = vec3(0,0,-2);
    vec3 lookAt = vec3(0,-.5,-2.);
    
    // add movement
    lookAt = path(t+3.);
    cam = movement;
    // cam.y += abs(sin(u_time*20.)*.02);
    
    // Unit vectors
    vec3 forward = normalize(lookAt - cam);
    vec3 right = normalize(vec3(forward.z, 0., -forward.x));
    vec3 up = normalize(cross(forward, right));
    
    // FOV
    float FOV = 1.4;
    
    // Ray origin and ray direction
    vec3 ro = cam;
    vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up);
    rd.y -= (movement.y - lookAt.y) * .04;
    
    // Ray marching
    const float clipNear = 0.;
    const float clipFar = 20.;
    Surface objectSurface = rayMarch(ro, rd, clipNear, clipFar);
    if(objectSurface.distance > clipFar) {
      gl_FragColor = vec4(clipColour, 1.);
      return;
    }
    
    vec3 sceneColour = lighting(objectSurface, cam);
    
    gl_FragColor = vec4(sceneColour, 1.);
    // gl_FragColor += vec4(vec3(objectSurface.fog*.01), 1.);
  }
  
</script>
<!-- partial -->
  <script >
      
      /**
 * A basic Web GL class. This provides a very basic setup for GLSL shader code.
 * Currently it doesn't support anything except for clip-space 3d, but this was
 * done so that we could start writing fragments right out of the gate. My
 * Intention is to update it with particle and polygonal 3d support later on.
 *
 * @class WTCGL
 * @author Liam Egan <liam@wethecollective.com>
 * @version 0.0.8
 * @created Jan 16, 2019
 */
class WTCGL {

  /**
              * The WTCGL Class constructor. If construction of the webGL context fails 
               * for any reason this will return null.
               * 
               * @TODO make the dimension properties properly optional
               * @TODO provide the ability to allow for programmable buffers
              *
              * @constructor
              * @param {HTMLElement} el The canvas element to use as the root
              * @param {string} vertexShaderSource The vertex shader source
              * @param {string} fragmentShaderSource The fragment shader source
               * @param {number} [width] The width of the webGL context. This will default to the canvas dimensions
               * @param {number} [height] The height of the webGL context. This will default to the canvas dimensions
               * @param {number} [pxratio=1] The pixel aspect ratio of the canvas
               * @param {boolean} [styleElement] A boolean indicating whether to apply a style property to the canvas (resizing the canvas by the inverse of the pixel ratio)
               * @param {boolean} [webgl2] A boolean indicating whether to try to create a webgl2 context instead of a regulart context
              */
  constructor(el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, styleElement, webgl2) {
    this.run = this.run.bind(this);

    this._onRun = () => {};

    // Destructure if an object is aprovided instead a series of parameters
    if (el instanceof Object && el.el) {
      ({ el, vertexShaderSource, fragmentShaderSource, width, height, pxratio, webgl2, styleElement } = el);
    }

    // If the HTML element isn't a canvas, return null
    if (!el instanceof HTMLElement || el.nodeName.toLowerCase() !== 'canvas') {
      console.log('Provided element should be a canvas element');
      return null;
    }

    this._el = el;
    // The context should be either webgl2, webgl or experimental-webgl
    if (webgl2 === true) {
      this.isWebgl2 = true;
      this._ctx = this._el.getContext("webgl2", this.webgl_params) || this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params);
    } else {
      this.isWebgl2 = false;
      this._ctx = this._el.getContext("webgl", this.webgl_params) || this._el.getContext("experimental-webgl", this.webgl_params);
    }

    // Set up the extensions
    this._ctx.getExtension('OES_standard_derivatives');
    this._ctx.getExtension('EXT_shader_texture_lod');
    this._ctx.getExtension('OES_texture_float');
    this._ctx.getExtension('WEBGL_color_buffer_float');
    this._ctx.getExtension('OES_texture_float_linear');
    this._ctx.getExtension('EXT_color_buffer_float');

    // We can't make the context so return an error
    if (!this._ctx) {
      console.log('Browser doesn\'t support WebGL ');
      return null;
    }

    // Create the shaders
    this._vertexShader = WTCGL.createShaderOfType(this._ctx, this._ctx.VERTEX_SHADER, vertexShaderSourc.........完整代码请登录后点击上方下载按钮下载查看

网友评论0