threejs实现一个三维太阳球体燃烧效果代码
代码语言:html
所属分类:三维
代码描述:threejs实现一个三维太阳球体燃烧效果代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link type="text/css" rel="stylesheet" href="//repo.bfw.wiki/bfwrepo/css/aqua-1.5.5.css"> <style> body { display: flex; justify-content: center; align-items: center; min-height: 100vh; margin: 0; background: #f7f7fd; } </style> </head> <body > <div class="relative w-screen h-screen"> <div class="sun w-full h-full bg-black"></div> </div> <script type="text/javascript" src="//repo.bfw.wiki/bfwrepo/js/three.126.js"></script> <script type="text/javascript" src="//repo.bfw.wiki/bfwrepo/js/stats-min.js"></script> <script type="text/javascript" src="//repo.bfw.wiki/bfwrepo/js/OrbitControls.133.js"></script> <script> const calcAspect = (el) => el.clientWidth / el.clientHeight; const getNormalizedMousePos = (e) => { return { x: (e.clientX / window.innerWidth) * 2 - 1, y: -(e.clientY / window.innerHeight) * 2 + 1 }; }; const templateVertexShader = ` varying vec2 vUv; void main(){ vec4 modelPosition=modelMatrix*vec4(position,1.); vec4 viewPosition=viewMatrix*modelPosition; vec4 projectedPosition=projectionMatrix*viewPosition; gl_Position=projectedPosition; vUv=uv; } `; const templateFragmentShader = ` uniform float uTime; uniform vec2 uMouse; uniform vec2 uResolution; varying vec2 vUv; void main(){ vec3 color=vec3(vUv.x,vUv.y,1.); gl_FragColor=vec4(color,1.); } `; const sunNoiseVertexShader = ` #define GLSLIFY 1 varying vec2 vUv; varying vec3 vPosition; void main(){ vec4 modelPosition=modelMatrix*vec4(position,1.); vec4 viewPosition=viewMatrix*modelPosition; vec4 projectedPosition=projectionMatrix*viewPosition; gl_Position=projectedPosition; vUv=uv; vPosition=position; } `; const sunNoiseFragmentShader = ` #define GLSLIFY 1 // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float mod289(float x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } float permute(float x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float taylorInvSqrt(float r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0); vec4 p,s; p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p, vec4(0.0))); p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; return p; } // (sqrt(5) - 1)/4 = F4, used once below #define F4 0.309016994374947451 float snoise(vec4 v) { const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 -0.447213595499958); // -1 + 4 * G4 // First corner vec4 i = floor(v + dot(v, vec4(F4)) ); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) vec4 i0; vec3 isX = step( x0.yzw, x0.xxx ); vec3 isYZ = step( x0.zww, x0.yyz ); // i0.x = dot( isX, vec3( 1.0 ) ); i0.x = isX.x + isX.y + isX.z; i0.yzw = 1.0 - isX; // i0.y += dot( isYZ.xy, vec2( 1.0 ) ); i0.y += isYZ.x + isYZ.y; i0.zw += 1.0 - isYZ.xy; i0.z += isYZ.z; i0.w += 1.0 - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel vec4 i3 = clamp( i0, 0.0, 1.0 ); vec4 i2 = clamp( i0-1.0, 0.0, 1.0 ); vec4 i1 = clamp( i0-2.0, 0.0, 1.0 ); // x0 = x0 - 0.0 + 0.0 * C.xxxx // x1 = x0 - i1 + 1.0 * C.xxxx // x2 = x0 - i2 + 2.0 * C.xxxx // x3 = x0 - i3 + 3.0 * C.xxxx // x4 = x0 - 1.0 + 4.0 * C.xxxx vec4 x1 = x0 - i1 + C.xxxx; vec4 x2 = x0 - i2 + C.yyyy; vec4 x3 = x0 - i3 + C.zzzz; vec4 x4 = x0 + C.wwww; // Permutations i = mod289(i); float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x); vec4 j1 = permute( permute( permute( permute ( i.w + vec4(i1.w, i2.w, i3.w, 1.0 )) + i.z + vec4(i1.z, i2.z, i3.z, 1.0 )) + i.y + vec4(i1.y, i2.y, i3.y, 1.0 )) + i.x + vec4(i1.x, i2.x, i3.x, 1.0 )); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ; vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; p4 *= taylorInvSqrt(dot(p4,p4)); // Mix contributions from the five corners vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0); vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0); m0 = m0 * m0; m1 = m1 * m1; return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 ))) + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ; } #define OCTAVES 6 uniform float uTime; uniform vec2 uMouse; uniform vec2 uResolution; varying vec2 vUv; varying vec3 vPosition; float fbm4d(vec4 p){ float sum=0.; float amp=1.; float scale=1.; for(int i=0;i<OCTAVES;i++){ sum+=snoise(p*scale)*amp; p.w+=100.; amp*=.9; scale*=2.; } return sum; } void main(){ vec4 p=vec4(vPosition*4.,uTime*.025); float noise=fbm4d(p); vec4 p1=vec4(vPosition*2.,uTime*.25); float spot=max(snoise(p1),0.); vec4 color=vec4(noise); color*=mix(1.,spot,.7); gl_FragColor=color; } `; const sunShapeVertexShader = ` #define GLSLIFY 1 mat2 rotation2d(float angle) { float s = sin(angle); float c = cos(angle); return mat2( c, -s, s, c ); } mat4 rotation3d(vec3 axis, float angle) { axis = normalize(axis); float s = sin(angle); float c = cos(angle); float oc = 1.0 - c; return mat4( oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0 ); } vec2 rotate(vec2 v, float angle) { return rotation2d(angle) * v; } vec3 rotate(vec3 v, vec3 axis, float angle) { return (rotation3d(axis, angle) * vec4(v, 1.0)).xyz; } // https://tympanus.net/codrops/2019/10/29/real-time-multiside-refraction-in-three-steps/ vec3 getEyeVector(mat4 modelMat,vec3 pos,vec3 camPos){ vec4 worldPosition=modelMat*vec4(pos,1.); vec3 eyeVector=normalize(worldPosition.xyz-camPos); return eyeVector; } const float HALF_PI=1.570796327; uniform float uTime; uniform float uVelocity; uniform float uStagger; varying vec2 vUv; varying vec3 vPosition; varying vec3 vLayer1; varying vec3 vLayer2; varying vec3 vLayer3; varying vec3 vNormal; varying vec3 vEyeVector; void main(){ vec4 modelPosition=modelMatrix*vec4(position,1.); vec4 viewPosition=viewMatrix*modelPosition; vec4 projectedPosition=projectionMatrix*viewPosition; gl_Position=projectedPosition; vec3 pos=position; float displacement1=uVelocity*uTime; float displacement2=uVelocity*(uTime*1.5+uStagger*1.); float displacement3=uVelocity*(uTime*2.+uStagger*2.); vec3 xy=vec3(1.,1.,0.); vec3 xz=vec3(1.,0.,1.); vec3 yz=vec3(0.,1.,1.); vec3 layer1=rotate(pos,xy,displacement1); vec3 layer2=rotate(pos,xz,displacement2); vec3 layer3=rotate(pos,yz,displacement3); vUv=uv; vPosition=position; vLayer1=layer1; vLayer2=layer2; vLayer3=layer3; vNormal=normal; vEyeVector=getEyeVector(modelMatrix,position,cameraPosition); } `; const sunShapeFragmentShader = ` #define GLSLIFY 1 // https://www.shadertoy.com/view/4scSW4 float fresnel(float bias,float scale,float power,vec3 I,vec3 N) { return bias+scale*pow(1.+dot(I,N),power); } // https://www.shadertoy.com/view/XlSSzK vec3 firePalette(float i){ float T=1400.+1300.*i;// Temperature range (in Kelvin). vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers). L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.); return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc. } uniform float uTime; uniform vec2 uMouse; uniform vec2 uResolution; uniform samplerCube uNoiseTexture; uniform float uBrightness; varying vec2 vUv; varying vec3 vPosition; varying vec3 vLayer1; varying vec3 vLayer2; varying vec3 vLayer3; varying vec3 vNormal; varying vec3 vEyeVector; float layerSum(){ float sum=0.; sum+=textureCube(uNoiseTexture,vLayer1).r; sum+=textureCube(uNoiseTexture,vLayer2).r; sum+=textureCube(uNoiseTexture,vLayer3).r; sum*=uBrightness; return sum; } void main(){ float brightness=layerSum(); brightness=4.*brightness+1.; float F=fresnel(0.,1.,2.,vEyeVector,vNormal); brightness+=F; brightness*=.5; vec4 color=vec4(firePalette(brightness),1.); gl_FragColor=color; } `; const sunRingVertexShader = ` #define GLSLIFY 1 varying vec2 vUv; varying vec3 vPosition; void main(){ vec4 modelPosition=modelMatrix*vec4(position,1.); vec4 viewPosition=viewMatrix*modelPosition; vec4 projectedPosition=projectionMatrix*viewPosition; gl_Position=projectedPosition; vUv=uv; vPosition=position; } `; const sunRingFragmentShader = ` #define GLSLIFY 1 float invert(float n){ return 1.-n; } vec3 invert(vec3 n){ return 1.-n; } // https://www.shadertoy.com/view/XlSSzK vec3 firePalette(float i){ float T=1400.+1300.*i;// Temperature range (in Kelvin). vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers). L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.); return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc. } uniform float uTime; uniform vec2 uMouse; uniform vec2 uResolution; varying vec2 vUv; varying vec3 vPosition; void main(){ float radial=invert(vPosition.z); radial=pow(radial,3.); float brightness=(1.+radial*.83)*radial*.4; vec3 ringColor=firePalette(brightness); vec4 color=vec4(ringColor,radial); gl_FragColor=color; } `; class Base { constructor(sel, debug = false) { this.debug = debug; this.container = document.querySelector(sel); this.perspectiveCameraParams = { fov: 75, near: 0.1, far: 100 }; this.orthographicCameraParams = { zoom: 2, near: -100, far: 1000 }; this.cameraPosition = new THREE.Vector3(0, 3, 10); this.lookAtPosition = new THREE.Vector3(0, 0, 0); this.rendererParams = { outputEncoding: THREE.LinearEncoding, config: { alpha: true, antialias: true } }; this.mousePos = new THREE.Vector2(0, 0); } // 初始化 init() { this.createScene(); this.createPerspectiveCamera(); this.createRenderer(); this.createMesh({}); this.createLight(); this.createOrbitControls(); this.addListeners(); this.setLoop(); } // 创建场景 createScene() { const scene = new THREE.Scene(); if (this.debug) { scene.add(new THREE.AxesHelper()); const stats = Stats(); this.container.appendChild(stats.dom); this.stats = stats; } this.scene = scene; } // 创建透视相机 createPerspectiveCamera() { const { perspectiveCameraParams, cameraPosition, lookAtPosition } = this; const { fov, near, far } = perspectiveCameraParams; const aspect = calcAspect(this.container); const camera = new THREE.PerspectiveCamera(fov, aspect, near, far); camera.position.copy(cameraPosition); camera.lookAt(lookAtPosition); this.camera = camera; } // 创建正交相机 createOrthographicCamera() { const { orthographicCameraParams, cameraPosition, lookAtPosition } = this; const { left, right, top, bottom, near, far } = orthographi.........完整代码请登录后点击上方下载按钮下载查看
网友评论0