three实现三维液态物体动画效果代码

代码语言:html

所属分类:三维

代码描述:three实现三维液态物体动画效果代码

代码标签: three 液态 三维

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">

  <meta name="viewport" content="width=device-width, initial-scale=1">
  <link type="text/css" rel="stylesheet" href="//repo.bfw.wiki/bfwrepo/css/aqua-1.5.5.css">

  
<style>
body {
  display: flex;
  justify-content: center;
  align-items: center;
  min-height: 100vh;
  margin: 0;
}
</style>



</head>

<body >
  <div class="relative w-screen h-screen">
  <div class="liquid-crystal w-full h-full bg-black"></div>
</div>
  

  
      <script type="module">
import * as THREE from "//repo.bfw.wiki/bfwrepo/js/module/three/build/three.module.js";
import ky from "//repo.bfw.wiki/bfwrepo/js/module/kyouka/kyouka.1.2.5.js";
import { OrbitControls } from "//repo.bfw.wiki/bfwrepo/js/module/three/examples/jsm/controls/OrbitControls.js";

const calcAspect = (el) => el.clientWidth / el.clientHeight;
const getNormalizedMousePos = (e) => {
    return {
        x: (e.clientX / window.innerWidth) * 2 - 1,
        y: -(e.clientY / window.innerHeight) * 2 + 1
    };
};
const liquidCrystalVertexShader = `
#define GLSLIFY 1
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
//               noise functions.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
//

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v)
  {
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //   x0 = x0 - 0.0 + 0.0 * C.xxx;
  //   x1 = x0 - i1  + 1.0 * C.xxx;
  //   x2 = x0 - i2  + 2.0 * C.xxx;
  //   x3 = x0 - 1.0 + 3.0 * C.xxx;
  vec3 x1 = x0 - i1 + C.xxx;
  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

// Permutations
  i = mod289(i);
  vec4 p = permute( permute( permute(
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  float n_ = 0.142857142857; // 1.0/7.0
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                dot(p2,x2), dot(p3,x3) ) );
  }

const float PI = 3.14159265359;

vec4 getWorldNormal(mat4 modelMat,vec3 normal){
    vec4 worldNormal=normalize((modelMat*vec4(normal,0.)));
    return worldNormal;
}

uniform float uTime;
uniform vec2 uMouse;

varying vec2 vUv;
varying vec3 vWorldNormal;

vec3 distort(vec3 p){
    vec3 pointDirection=normalize(p);
    vec3 mousePoint=vec3(uMouse,1.);
    vec3 mouseDirection=normalize(mousePoint);
    float mousePointAngle=dot(pointDirection,mouseDirection);
    
    float freq=1.5;
    float t=uTime*100.;
    
    float f=PI*freq;
    float fc=mousePointAngle*f;
    
    vec3 n11=pointDirection*1.5;
    vec3 n12=vec3(uTime)*4.;
    float dist=smoothstep(.4,1.,mousePointAngle);
    float n1a=dist*2.;
    float noise1=snoise(n11+n12)*n1a;
    
    vec3 n21=pointDirection*1.5;
    vec3 n22=vec3(0.,0.,uTime)*2.;
    vec3 n23=vec3(uMouse,0.)*.2;
    float n2a=.8;
    float noise2=snoise(n21+n22+n23)*n2a;
    
    float mouseN1=sin(fc+PI+t);
    float mouseN2=smoothstep(f,f*2.,fc+t);
    float mouseN3=smoothstep(f*2.,f,fc+t);
    float mouseNa=4.;
    float mouseNoise=mouseN1*mouseN2*mouseN3*mouseNa;
    
    float noise=noise1+noise2+mouseNoise;
    vec3 distortion=pointDirection*(noise+length(p));
    return distortion;
}

// http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
vec3 orthogonal(vec3 v){
    return normalize(abs(v.x)>abs(v.z)?vec3(-v.y,v.x,0.)
    :vec3(0.,-v.z,v.y));
}

// https://codepen.io/marco_fugaro/pen/xxZWPWJ?editors=0010
vec3 fixNormal(vec3 position,vec3 distortedPosition,vec3 normal){
    vec3 tangent=orthogonal(normal);
    vec3 bitangent=normalize(cross(normal,tangent));
    float offset=.1;
    vec3 neighbour1=position+tangent*offset;
    vec3 neighbour2=position+bitangent*offset;
    vec3 displacedNeighbour1=distort(neighbour1);
    vec3 displacedNeighbour2=distort(neighbour2);
    vec3 displacedTangent=displacedNeighbour1-distortedPosition;
    vec3 displacedBitangent=displacedNeighbour2-distortedPosition;
    vec3 displacedNormal=normalize(cross(displacedTangent,displacedBitangent));
    return displacedNormal;
}

void main(){
    vec3 pos=position;
    pos=distort(pos);
    vec4 modelPosition=modelMatrix*vec4(pos,1.);
    vec4 viewPosition=viewMatrix*modelPosition;
    vec4 projectedPosition=projectionMatrix*viewPosition;
    gl_Position=projectedPosition;
    
    vec3 distortedNormal=fixNormal(position,pos,normal);
    
    vUv=uv;
    vWorldNormal=getWorldNormal(modelMatrix,distortedNormal).xyz;
}
`;
const liquidCrystalFragmentShader = `
#define GLSLIFY 1
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
//               noise functions.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
//

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v)
  {
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //   x0 = x0 - 0.0 + 0.0 * C.xxx;
  //   x1 = x0 - i1  + 1.0 * C.xxx;
  //   x2 = x0 - i2  + 2.0 * C.xxx;
  //   x3 = x0 - 1.0 + 3.0 * C.xxx;
  vec3 x1 = x0 - i1 + C.xxx;
  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

// Permutations
  i = mod289(i);
  vec4 p = permute( permute( permute(
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  float n_ = 0.142857142857; // 1.0/7.0
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                dot(p2,x2), dot(p3,x3) ) );
  }

float invert(float n){
    return 1.-n;
}

vec3 invert(vec3 n){
    return 1.-n;
}

uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;
uniform sampler2D uIriMap;
uniform float uIriBoost;

varying vec2 vUv;
varying vec3 vWorldNormal;

void main(){
    vec2 newUv=vUv;
    
    // pbr
    float noise=snoise(vWorldNormal*5.)*.3;
    vec3 N=normalize(vWorldNormal+vec3(noise));
    vec3 V=normalize(cameraPosition);
    float NdotV=max(dot(N,V),0.);
    float colorStrength=smoothstep(0.,.8,NdotV);
    vec3 color=invert(vec3(colorStrength));
    
    // iri
    vec3 airy=texture2D(uIriMap,vec2(NdotV*.99,0.)).rgb;
    airy*=airy;
    vec3 specularLight=vWorldNormal*airy*uIriBoost;
    
    float mixStrength=smoothstep(.3,.6,NdotV);
    vec3 finalColor=mix(specularLight,color,mixStrength);
    
    gl_FragColor=vec4(finalColor,0.);
}
`;
/**
 * @classdesc
 * ThinFilmFresnelMap is a lookup texture containing the reflection colour. The texture index value
 * is dot(normal, view). The texture values are stored in approximated gamma space (power 2.0), so
 * the sampled value needs to be multiplied with itself before use. The sampled value should replace
 * the fresnel factor in a PBR material.
 *
 * @property filmThickness The thickness of the thin film layer in nanometers. Defaults to 380.
 * @property refractiveIndexFilm The refractive index of the thin film. Defaults to 2.
 * @property refractiveIndexBase The refractive index of the material under the film. Defaults to 3.
 *
 * @constructor
 * @param filmThickness The thickness of the thin film layer in nanometers. Defaults to 380.
 * @param refractiveIndexFilm The refractive index of the thin film. Defaults to 2.
 * @param refractiveIndexBase The refractive index of the material under the film. Defaults to 3.
 * @param size The width of the texture. Defaults to 64.
 *
 * @extends DataTexture
 *
 * @author David Lenaerts <http://www.derschmale.com>
 */
function ThinFilmFresnelMap(filmThickness, refractiveIndexFilm, refractiveIndexBase, size) {
    this._filmThickness = filmThickness || 380.0;
    this._refractiveIndexFilm = refractiveIndexFilm || 2;
    this._refractiveIndexBase = refractiveIndexBase || 3;
    this._size = size || 64;
    this._data = new Uint8Array(this._size * 4);
    this._updateData();
    this.generateMipmaps = true;
    this.needsUpdate = true;
    this.texture = new THREE.DataTexture(this._data, this._size, 1);
}
ThinFilmFresnelMap.prototype = Object.create(THREE.DataTexture.prototype, {
    filmThickness: {
        get: function () {
            return this._filmThickness;
        },
        set: function (value) {
            this._filmThickness = value;
            this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase);
        }
    },
    refractiveIndexFilm: {
        get: function () {
            return this._refractiveIndexFilm;
        },
        set: function (value) {
            this._refractiveIndexFilm = value;
            this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase);
        }
    },
    refractiveIndexBase: {
        get: function () {
            return this._refractiveIndexBase;
        },
        set: function (value) {
            this._refractiveIndexBase = value;
            this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase);
        }
    }
});
/**
 * Regenerates the lookup texture given new data.
 * @param filmThickness The thickness of the thin film layer in nanometers. Defaults to 380.
 * @param refractiveIndexFilm The refractive index of the thin film. Defaults to 2.
 * @param refractiveIndexBase The refractive index of the material under the film. Defaults to 3.
 */
ThinFilmFresnelMap.prototype.updateSettings = function (filmThickness, refractiveIndexFilm, refractiveIndexBase) {
    this._filmThickness = filmThickness || 380;
    this._refractiveIndexFilm = refractiveIndexFilm || 2;
    this._refractiveIndexBase = refractiveIndexBase || 3;
    this._updateData();
};
/**
 * @private
 */
ThinFilmFresnelMap.prototype._fresnelRefl = function (refractiveIndex1, refractiveIndex2, cos1, cos2, R, phi) {
    // r is amplitudinal, R is power
    let sin1Sqr = 1.0 - cos1 * cos1; // = sin^2(incident)
    let refrRatio = refractiveIndex1 / refractiveIndex2;
    if (refrRatio * refrRatio * sin1Sqr > 1.0) {
        // total internal reflection
        R.x = 1.0;
        R.y = 1.0;
        let sqrRefrRatio = refrRatio * refrRatio;
        // it looks like glsl's atan ranges are different from those in JS?
        phi.x =
            2.0 *
                Math.atan((-sqrRefrRatio * Math.sqrt(sin1Sqr - 1.0 / sqrRefrRatio)) / cos1);
        phi.y = 2.0 * Math.atan(-Math.sqrt(sin1Sqr - 1.0 / sqrRefrRatio) / cos1);
    }
    else {
        let r_p = (refractiveIndex2 * cos1 - refractiveIndex1 * cos2) /
            (refractiveIndex2 * cos1 + refractiveIndex1 * cos2);
        let r_s = (refractiveIndex1 * cos1 - refractiveIndex2 * cos2) /
            (refractiveIndex1 * cos1 + refractiveIndex2 * cos2);
        phi.x = r_p < 0.0 ? Math.PI : 0.0;
        phi.y = r_s < 0.0 ? Math.PI : 0.0;
        R.x = r_p * r_p;
        R.y = r_s * r_s;
    }
};
/**
 * @private
 */
ThinFilmFresnelMap.prototype._updateData = function () {
    let filmThickness = this._filmThickness;
    let refractiveIndexFilm = this._refractiveIndexFilm;
    let refractiveIndexBase = this._refractiveIndexBase;
    let size = this._size;
    // approximate CIE XYZ weighting functions from: http://jcgt.org/published/0002/02/01/paper.pdf
    function xFit_1931(lambda) {
        let t1 = (lambda - 442.0) * (lambda < 442.0 ? 0.0624 : 0.0374);
        let t2 = (lambda - 599.8) * (lambda < 599.8 ? 0.0264 : 0.0323);
        let t3 = (lambda - 501.1) * (lambda < 501.1 ? 0.049 : 0.0382);
        return (0.362 * Math.exp(-0.5 * t1 * t1) +
            1.056 * Math.exp(-0.5 * t2 * t2) -
            0.065 * Math.exp(-0.5 * t3 * t3));
    }
    function yFit_1931(lambda) {
        let t1 = (lambda - 568.8) * (lambda < 568.8 ? 0.0213 : 0.0247);
        let t2 = (lambda - 530.9) * (lambda < 530.9 ? 0.0613 : 0.0322);
        return 0.821 * Math.exp(-0.5 * t1 * t1) + 0.286 * Math.exp(-0.5 * t2 * t2);
    }
    function zFit_1931(lambda) {
        let t1 = (lambda - 437.0) * (lambda < 437.0 ? 0.0845 : 0.0278);
        let t2 = (lambda - 459.0) * (lambda < 459.0 ? 0.0385 : 0.0725);
        return 1.217 * Math.exp(-0.5 * t1 * t1) + 0.681 * Math.exp(-0.5 * t2 * t2);
    }
    let data = this._data;
    let phi12 = new THREE.Vector2();
    let phi21 = new THREE.Vector2();
    let phi23 = new THREE.Vector2();
    let R12 = new THREE.Vector2();
    let T12 = new THREE.Vector2();
    let R23 = new THREE.Vector2();
    let R_bi = new THREE.Vector2();
    let T_tot = new THREE.Vector2();
    let R_star = new THREE.Vector2();
    let R_bi_sqr = new THREE.Vector2();
    let R_12_star = new THREE.Vector2();
    let R_star_t_tot = new THREE.Vector2();
    let refrRatioSqr = 1.0 / (refractiveIndexFilm * refractiveIndexFilm);
    let refrRatioSqrBase = (refractiveIndexFilm * refractiveIndexFilm) /
        (refractiveIndexBase * refractiveIndexBase);
    // RGB is too limiting, so we use the entire spectral domain, but using limited samples (64) to
    // create more pleasing bands
    let numBands = 64;
    let waveLenRange = 780 - 380; // the entire visible range
    for (let i = 0; i < size; ++i) {
        let cosThetaI = i / size;
        let cosThetaT = Math.sqrt(1 - refrRatioSqr * (1.0 - cosThetaI * cosThetaI));
        let cosThetaT2 = Math.sqrt(1 - refrRatioSqrBase * (1.0 - cosThetaT * cosThetaT));
        // this is essentially the extra distance traveled by a ray if it bounds through the film
        let pathDiff = 2.0 * refractiveIndexFilm * filmThickness * cosThetaT;
        let pathDiff2PI = 2.0 * Math.PI * pathDiff;
        this._fresnelRefl(1.0, refract.........完整代码请登录后点击上方下载按钮下载查看

网友评论0