three实现三维液态物体动画效果代码
代码语言:html
所属分类:三维
代码描述:three实现三维液态物体动画效果代码
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link type="text/css" rel="stylesheet" href="//repo.bfw.wiki/bfwrepo/css/aqua-1.5.5.css"> <style> body { display: flex; justify-content: center; align-items: center; min-height: 100vh; margin: 0; } </style> </head> <body > <div class="relative w-screen h-screen"> <div class="liquid-crystal w-full h-full bg-black"></div> </div> <script type="module"> import * as THREE from "//repo.bfw.wiki/bfwrepo/js/module/three/build/three.module.js"; import ky from "//repo.bfw.wiki/bfwrepo/js/module/kyouka/kyouka.1.2.5.js"; import { OrbitControls } from "//repo.bfw.wiki/bfwrepo/js/module/three/examples/jsm/controls/OrbitControls.js"; const calcAspect = (el) => el.clientWidth / el.clientHeight; const getNormalizedMousePos = (e) => { return { x: (e.clientX / window.innerWidth) * 2 - 1, y: -(e.clientY / window.innerHeight) * 2 + 1 }; }; const liquidCrystalVertexShader = ` #define GLSLIFY 1 // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } const float PI = 3.14159265359; vec4 getWorldNormal(mat4 modelMat,vec3 normal){ vec4 worldNormal=normalize((modelMat*vec4(normal,0.))); return worldNormal; } uniform float uTime; uniform vec2 uMouse; varying vec2 vUv; varying vec3 vWorldNormal; vec3 distort(vec3 p){ vec3 pointDirection=normalize(p); vec3 mousePoint=vec3(uMouse,1.); vec3 mouseDirection=normalize(mousePoint); float mousePointAngle=dot(pointDirection,mouseDirection); float freq=1.5; float t=uTime*100.; float f=PI*freq; float fc=mousePointAngle*f; vec3 n11=pointDirection*1.5; vec3 n12=vec3(uTime)*4.; float dist=smoothstep(.4,1.,mousePointAngle); float n1a=dist*2.; float noise1=snoise(n11+n12)*n1a; vec3 n21=pointDirection*1.5; vec3 n22=vec3(0.,0.,uTime)*2.; vec3 n23=vec3(uMouse,0.)*.2; float n2a=.8; float noise2=snoise(n21+n22+n23)*n2a; float mouseN1=sin(fc+PI+t); float mouseN2=smoothstep(f,f*2.,fc+t); float mouseN3=smoothstep(f*2.,f,fc+t); float mouseNa=4.; float mouseNoise=mouseN1*mouseN2*mouseN3*mouseNa; float noise=noise1+noise2+mouseNoise; vec3 distortion=pointDirection*(noise+length(p)); return distortion; } // http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts vec3 orthogonal(vec3 v){ return normalize(abs(v.x)>abs(v.z)?vec3(-v.y,v.x,0.) :vec3(0.,-v.z,v.y)); } // https://codepen.io/marco_fugaro/pen/xxZWPWJ?editors=0010 vec3 fixNormal(vec3 position,vec3 distortedPosition,vec3 normal){ vec3 tangent=orthogonal(normal); vec3 bitangent=normalize(cross(normal,tangent)); float offset=.1; vec3 neighbour1=position+tangent*offset; vec3 neighbour2=position+bitangent*offset; vec3 displacedNeighbour1=distort(neighbour1); vec3 displacedNeighbour2=distort(neighbour2); vec3 displacedTangent=displacedNeighbour1-distortedPosition; vec3 displacedBitangent=displacedNeighbour2-distortedPosition; vec3 displacedNormal=normalize(cross(displacedTangent,displacedBitangent)); return displacedNormal; } void main(){ vec3 pos=position; pos=distort(pos); vec4 modelPosition=modelMatrix*vec4(pos,1.); vec4 viewPosition=viewMatrix*modelPosition; vec4 projectedPosition=projectionMatrix*viewPosition; gl_Position=projectedPosition; vec3 distortedNormal=fixNormal(position,pos,normal); vUv=uv; vWorldNormal=getWorldNormal(modelMatrix,distortedNormal).xyz; } `; const liquidCrystalFragmentShader = ` #define GLSLIFY 1 // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } float invert(float n){ return 1.-n; } vec3 invert(vec3 n){ return 1.-n; } uniform float uTime; uniform vec2 uMouse; uniform vec2 uResolution; uniform sampler2D uIriMap; uniform float uIriBoost; varying vec2 vUv; varying vec3 vWorldNormal; void main(){ vec2 newUv=vUv; // pbr float noise=snoise(vWorldNormal*5.)*.3; vec3 N=normalize(vWorldNormal+vec3(noise)); vec3 V=normalize(cameraPosition); float NdotV=max(dot(N,V),0.); float colorStrength=smoothstep(0.,.8,NdotV); vec3 color=invert(vec3(colorStrength)); // iri vec3 airy=texture2D(uIriMap,vec2(NdotV*.99,0.)).rgb; airy*=airy; vec3 specularLight=vWorldNormal*airy*uIriBoost; float mixStrength=smoothstep(.3,.6,NdotV); vec3 finalColor=mix(specularLight,color,mixStrength); gl_FragColor=vec4(finalColor,0.); } `; /** * @classdesc * ThinFilmFresnelMap is a lookup texture containing the reflection colour. The texture index value * is dot(normal, view). The texture values are stored in approximated gamma space (power 2.0), so * the sampled value needs to be multiplied with itself before use. The sampled value should replace * the fresnel factor in a PBR material. * * @property filmThickness The thickness of the thin film layer in nanometers. Defaults to 380. * @property refractiveIndexFilm The refractive index of the thin film. Defaults to 2. * @property refractiveIndexBase The refractive index of the material under the film. Defaults to 3. * * @constructor * @param filmThickness The thickness of the thin film layer in nanometers. Defaults to 380. * @param refractiveIndexFilm The refractive index of the thin film. Defaults to 2. * @param refractiveIndexBase The refractive index of the material under the film. Defaults to 3. * @param size The width of the texture. Defaults to 64. * * @extends DataTexture * * @author David Lenaerts <http://www.derschmale.com> */ function ThinFilmFresnelMap(filmThickness, refractiveIndexFilm, refractiveIndexBase, size) { this._filmThickness = filmThickness || 380.0; this._refractiveIndexFilm = refractiveIndexFilm || 2; this._refractiveIndexBase = refractiveIndexBase || 3; this._size = size || 64; this._data = new Uint8Array(this._size * 4); this._updateData(); this.generateMipmaps = true; this.needsUpdate = true; this.texture = new THREE.DataTexture(this._data, this._size, 1); } ThinFilmFresnelMap.prototype = Object.create(THREE.DataTexture.prototype, { filmThickness: { get: function () { return this._filmThickness; }, set: function (value) { this._filmThickness = value; this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase); } }, refractiveIndexFilm: { get: function () { return this._refractiveIndexFilm; }, set: function (value) { this._refractiveIndexFilm = value; this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase); } }, refractiveIndexBase: { get: function () { return this._refractiveIndexBase; }, set: function (value) { this._refractiveIndexBase = value; this.updateSettings(this._filmThickness, this._refractiveIndexFilm, this._refractiveIndexBase); } } }); /** * Regenerates the lookup texture given new data. * @param filmThickness The thickness of the thin film layer in nanometers. Defaults to 380. * @param refractiveIndexFilm The refractive index of the thin film. Defaults to 2. * @param refractiveIndexBase The refractive index of the material under the film. Defaults to 3. */ ThinFilmFresnelMap.prototype.updateSettings = function (filmThickness, refractiveIndexFilm, refractiveIndexBase) { this._filmThickness = filmThickness || 380; this._refractiveIndexFilm = refractiveIndexFilm || 2; this._refractiveIndexBase = refractiveIndexBase || 3; this._updateData(); }; /** * @private */ ThinFilmFresnelMap.prototype._fresnelRefl = function (refractiveIndex1, refractiveIndex2, cos1, cos2, R, phi) { // r is amplitudinal, R is power let sin1Sqr = 1.0 - cos1 * cos1; // = sin^2(incident) let refrRatio = refractiveIndex1 / refractiveIndex2; if (refrRatio * refrRatio * sin1Sqr > 1.0) { // total internal reflection R.x = 1.0; R.y = 1.0; let sqrRefrRatio = refrRatio * refrRatio; // it looks like glsl's atan ranges are different from those in JS? phi.x = 2.0 * Math.atan((-sqrRefrRatio * Math.sqrt(sin1Sqr - 1.0 / sqrRefrRatio)) / cos1); phi.y = 2.0 * Math.atan(-Math.sqrt(sin1Sqr - 1.0 / sqrRefrRatio) / cos1); } else { let r_p = (refractiveIndex2 * cos1 - refractiveIndex1 * cos2) / (refractiveIndex2 * cos1 + refractiveIndex1 * cos2); let r_s = (refractiveIndex1 * cos1 - refractiveIndex2 * cos2) / (refractiveIndex1 * cos1 + refractiveIndex2 * cos2); phi.x = r_p < 0.0 ? Math.PI : 0.0; phi.y = r_s < 0.0 ? Math.PI : 0.0; R.x = r_p * r_p; R.y = r_s * r_s; } }; /** * @private */ ThinFilmFresnelMap.prototype._updateData = function () { let filmThickness = this._filmThickness; let refractiveIndexFilm = this._refractiveIndexFilm; let refractiveIndexBase = this._refractiveIndexBase; let size = this._size; // approximate CIE XYZ weighting functions from: http://jcgt.org/published/0002/02/01/paper.pdf function xFit_1931(lambda) { let t1 = (lambda - 442.0) * (lambda < 442.0 ? 0.0624 : 0.0374); let t2 = (lambda - 599.8) * (lambda < 599.8 ? 0.0264 : 0.0323); let t3 = (lambda - 501.1) * (lambda < 501.1 ? 0.049 : 0.0382); return (0.362 * Math.exp(-0.5 * t1 * t1) + 1.056 * Math.exp(-0.5 * t2 * t2) - 0.065 * Math.exp(-0.5 * t3 * t3)); } function yFit_1931(lambda) { let t1 = (lambda - 568.8) * (lambda < 568.8 ? 0.0213 : 0.0247); let t2 = (lambda - 530.9) * (lambda < 530.9 ? 0.0613 : 0.0322); return 0.821 * Math.exp(-0.5 * t1 * t1) + 0.286 * Math.exp(-0.5 * t2 * t2); } function zFit_1931(lambda) { let t1 = (lambda - 437.0) * (lambda < 437.0 ? 0.0845 : 0.0278); let t2 = (lambda - 459.0) * (lambda < 459.0 ? 0.0385 : 0.0725); return 1.217 * Math.exp(-0.5 * t1 * t1) + 0.681 * Math.exp(-0.5 * t2 * t2); } let data = this._data; let phi12 = new THREE.Vector2(); let phi21 = new THREE.Vector2(); let phi23 = new THREE.Vector2(); let R12 = new THREE.Vector2(); let T12 = new THREE.Vector2(); let R23 = new THREE.Vector2(); let R_bi = new THREE.Vector2(); let T_tot = new THREE.Vector2(); let R_star = new THREE.Vector2(); let R_bi_sqr = new THREE.Vector2(); let R_12_star = new THREE.Vector2(); let R_star_t_tot = new THREE.Vector2(); let refrRatioSqr = 1.0 / (refractiveIndexFilm * refractiveIndexFilm); let refrRatioSqrBase = (refractiveIndexFilm * refractiveIndexFilm) / (refractiveIndexBase * refractiveIndexBase); // RGB is too limiting, so we use the entire spectral domain, but using limited samples (64) to // create more pleasing bands let numBands = 64; let waveLenRange = 780 - 380; // the entire visible range for (let i = 0; i < size; ++i) { let cosThetaI = i / size; let cosThetaT = Math.sqrt(1 - refrRatioSqr * (1.0 - cosThetaI * cosThetaI)); let cosThetaT2 = Math.sqrt(1 - refrRatioSqrBase * (1.0 - cosThetaT * cosThetaT)); // this is essentially the extra distance traveled by a ray if it bounds through the film let pathDiff = 2.0 * refractiveIndexFilm * filmThickness * cosThetaT; let pathDiff2PI = 2.0 * Math.PI * pathDiff; this._fresnelRefl(1.0, refract.........完整代码请登录后点击上方下载按钮下载查看
网友评论0