three实现彩色阴影变幻动画效果代码

代码语言:html

所属分类:动画

代码描述:three实现彩色阴影变幻动画效果代码

代码标签: three 彩色 阴影 变幻 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">
  

  <meta name="viewport" content="width=device-width, initial-scale=1">

  
<style>
body {
  color: rgba(240,240,240, 0.8);
  margin: 0;
  text-align: center;
  background-color: black;
}
canvas {
  display: block;
  width: 100%;
  height: 100%;
}
p {
  color: rgba(240,240,240, 0.8)
}
.header {
  top: 45%;
}
.footer {
  bottom:3%;
}
.description {
  color: gray;
  padding-top: 50px;
}
a, a:hover, a:visited {
  color: white;
  text-decoration: none;
} 
.disable-selection {
     -moz-user-select: none; /* Firefox */
      -ms-user-select: none; /* Internet Explorer */
   -khtml-user-select: none; /* KHTML browsers (e.g. Konqueror) */
  -webkit-user-select: none; /* Chrome, Safari, and Opera */
  -webkit-touch-callout: none; /* Disable Android and iOS callouts*/
}
h1::after {
  content: ' Three JS';
  font-size: 12px;
  position:absolute;
  top: 3px;
  padding-left: 5px;
  font-weight: 400;
}
h2::after {
  content: '2';
  font-size: 12px;
  position:absolute;
  top: 14px;
  padding-left: 5px;
}
</style>


</head>

<body >
  <div class="container fixed-top header disable-selection">
  <div class="row">
    <div class="col">
      <h1><strong>Shader Moon</strong></h1>
      <p role="button" onclick="randomMoon()">Generate Random Moon</p>
    </div>
  </div>
</div>
<!-- Original Code Experiment by Jaume Sanchez Elias-->
<!-- https://www.clicktorelease.com/blog/experiments-with-perlin-noise/-->
<script id="vertexShader" type="x-shader/x-vertex">
  void main() {
    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  }
</script>
<script id="ortho-vs" type="x-shader/x-vertex">
  varying vec2 vUv;
  void main() {
    vUv = uv;
    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 0.5 );
  }
</script>
<script id="noiseVertexShader" type="x-shader/x-vertex">
  //
  // GLSL textureless classic 3D noise "cnoise",
  // with an RSL-style periodic variant "pnoise".
  // Author:  Stefan Gustavson (stefan.gustavson@liu.se)
  // Version: 2011-10-11
  //
  // Many thanks to Ian McEwan of Ashima Arts for the
  // ideas for permutation and gradient selection.
  //
  // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
  // Distributed under the MIT license. See LICENSE file.
  // https://github.com/ashima/webgl-noise
  //
  vec3 mod289(vec3 x)
  {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
  }
  vec4 mod289(vec4 x)
  {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
  }
  vec4 permute(vec4 x)
  {
  return mod289(((x*34.0)+1.0)*x);
  }
  vec4 taylorInvSqrt(vec4 r)
  {
  return 1.79284291400159 - 0.85373472095314 * r;
  }
  vec3 fade(vec3 t) {
  return t*t*t*(t*(t*6.0-15.0)+10.0);
  }
  // Classic Perlin noise
  float cnoise(vec3 P)
  {
  vec3 Pi0 = floor(P); // Integer part for indexing
  vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
  Pi0 = mod289(Pi0);
  Pi1 = mod289(Pi1);
  vec3 Pf0 = fract(P); // Fractional part for interpolation
  vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  vec4 iy = vec4(Pi0.yy, Pi1.yy);
  vec4 iz0 = Pi0.zzzz;
  vec4 iz1 = Pi1.zzzz;
  vec4 ixy = permute(permute(ix) + iy);
  vec4 ixy0 = permute(ixy + iz0);
  vec4 ixy1 = permute(ixy + iz1);
  vec4 gx0 = ixy0 * (1.0 / 7.0);
  vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
  gx0 = fract(gx0);
  vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
  vec4 sz0 = step(gz0, vec4(0.0));
  gx0 -= sz0 * (step(0.0, gx0) - 0.5);
  gy0 -= sz0 * (step(0.0, gy0) - 0.5);
  vec4 gx1 = ixy1 * (1.0 / 7.0);
  vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
  gx1 = fract(gx1);
  vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
  vec4 sz1 = step(gz1, vec4(0.0));
  gx1 -= sz1 * (step(0.0, gx1) - 0.5);
  gy1 -= sz1 * (step(0.0, gy1) - 0.5);
  vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
  vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
  vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
  vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
  vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
  vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
  vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
  vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
  vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  g000 *= norm0.x;
  g010 *= norm0.y;
  g100 *= norm0.z;
  g110 *= norm0.w;
  vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  g001 *= norm1.x;
  g011 *= norm1.y;
  g101 *= norm1.z;
  g111 *= norm1.w;
  float n000 = dot(g000, Pf0);
  float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
  float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
  float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
  float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
  float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
  float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
  float n111 = dot(g111, Pf1);
  vec3 fade_xyz = fade(Pf0);
  vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
  vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
  float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  return 1.2 * n_xyz;
  }
  // Classic Perlin noise, periodic variant
  float pnoise(vec3 P, vec3 rep)
  {
    vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
    vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;
    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);
    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);
    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);
    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;
    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);
    vec3 fade_xyz = fade(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
    return 2.0 * n_xyz;
  }
  varying vec3 vNormal;
  uniform float time;
  uniform float weight;
  uniform float morph;
  uniform float psize;
  
  void main() {
    float f = morph * pnoise( normal + time, vec3( 10.0 ) );
    vNormal = normalize(normal);
    vec4 pos = vec4( position + f * normal, 1.0 );
    gl_Position = projectionMatrix * modelViewMatrix * pos;
    gl_PointSize = psize;
  }
</script>
<script id="fs_ZoomBlur" type="x-shader/x-vertex">
  varying vec2 vUv;
  uniform sampler2D tDiffuse;
  uniform vec2 resolution;
  uniform float strength;
  float random(vec3 scale,float seed){return fract(sin(dot(gl_FragCoord.xyz+seed,scale))*43758.5453+seed);}
  void main() {
    vec2 center = .5 * resolution;
    vec4 color = vec4(0.0);
    float total = 0.0;
    vec2 toCenter=center-vUv*resolution;
    float offset=random(vec3(12.9898,78.233,151.7182),0.0);
    for(float t=0.0;t<=50.0;t++){
      float percent=(t+offset)/40.0;
      float weight = 100.0*(percent-percent*percent);
      vec4 sample=texture2D(tDiffuse,vUv+toCenter*percent*strength/resolution);
      sample.rgb*=sample.a;
      color+=sample*weight;
      total+=weight;
    }
    gl_FragColor = color/total;
    gl_FragColor.rgb /= gl_FragColor.a;
    //gl_FragDepth = color;
  }
</script>
<script id="fragmentShader" type="x-shader/x-vertex">
  //
  // GLSL textureless classic 3D noise "cnoise",
  // with an RSL-style periodic variant "pnoise".
  // Author:  Stefan Gustavson (stefan.gustavson@liu.se)
  // Version: 2011-10-11
  //
  // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
  // Distributed under the MIT license. See LICENSE file.
  // https://github.com/ashima/webgl-noise
  //
  vec3 mod289(vec3 x)
  {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
  }
  vec4 mod289(vec4 x)
  {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
  }
  vec4 permute(vec4 x)
  {
  return mod289(((x*34.0)+1.0)*x);
  }
  vec4 taylorInvSqrt(vec4 r)
  {
  return 1.79284291400159 - 0.85373472095314 * r;
  }
  vec3 fade(vec3 t) {
  return t*t*t*(t*(t*6.0-15.0)+10.0);
  }
  // Classic Perlin noise
  float cnoise(vec3 P)
  {
  vec3 Pi0 = floor(P); // Integer part for indexing
  vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
  Pi0 = mod289(Pi0);
  Pi1 = mod289(Pi1);
  vec3 Pf0 = fract(P); // Fractional part for interpolation
  vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  vec4 iy = vec4(Pi0.yy, Pi1.yy);
  vec4 iz0 = Pi0.zzzz;
  vec4 iz1 = Pi1.zzzz;
  vec4 ixy = permute(permute(ix) + iy);
  vec4 ixy0 = permute(ixy + iz0);
  vec4 ixy1 = permute(ixy + iz1);
  vec4 gx0 = ixy0 * (1.0 / 7.0);
  vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
  gx0 = fract(gx0);
  vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
  vec4 sz0 = step(gz0, vec4(0.0));
  gx0 -= sz0 * (step(0.0, gx0) - 0.5);
  gy0 -= sz0 * (step(0.0, gy0) - 0.5);
  vec4 gx1 = ixy1 * (1.0 / 7.0);
  vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
  gx1 = fract(gx1);
  vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
  vec4 sz1 = step(gz1, vec4(0.0));
  gx1 -= sz1 * (step(0.0, gx1) - 0.5);
  gy1 -= sz1 * (step(0.0, gy1) - 0.5);
  vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
  vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
  vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
  vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
  vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
  vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
  vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
  vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
  vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  g000 *= norm0.x;
  g010 *= norm0.y;
  g100 *= norm0.z;
  g110 *= norm0.w;
  vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  g001 *= norm1.x;
  g011 *= norm1.y;
  g101 *= norm1.z;
  g111 *= norm1.w;
  float n000 = dot(g000, Pf0);
  float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
  float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
  float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
  float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
  float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
  float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
  float n111 = dot(g111, Pf1);
  vec3 fade_xyz = fade(Pf0);
  vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
  vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
  float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  return 2.2 * n_xyz;
  }
  // Classic Perlin noise, periodic variant
  float pnoise(vec3 P, vec3 rep)
  {
    vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
    vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, m.........完整代码请登录后点击上方下载按钮下载查看

网友评论0