three+ccapture实现无限循环408超时时钟指针摆动动画效果代码

代码语言:html

所属分类:动画

代码描述:three+ccapture实现无限循环408超时时钟指针摆动动画效果代码,时钟指针放大无限嵌套摆动动画,有催眠效果。

代码标签: three ccapture 无限 循环 408 超时 时钟 指针 摆动 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">

  
  
  
<style>
body {
  margin: 0;
  padding: 0;
}

#container {
  position: fixed;
  touch-action: none;
}

.message {
  padding: 0 20px;
  font-family: Helvetica, Arial;
  position: fixed;
  bottom: 0%;
  left: 50%;
  transform: translate(-50%, -50%);
}

p {
  margin: 2px;
}
</style>



</head>

<body >
<script type="text/javascript" src="//repo.bfw.wiki/bfwrepo/js/three.88.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    void main() {
        gl_Position = vec4( position, 1.0 );
    }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  uniform sampler2D u_clockface;
  
  #define PI 3.141592653589793
  #define TAU 6.283185307179586

  vec2 hash2(vec2 p)
  {
    vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
    return o;
  }
  
  vec3 hsb2rgb( in vec3 c ){
    vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
                             6.0)-3.0)-1.0,
                     0.0,
                     1.0 );
    rgb = rgb*rgb*(3.0-2.0*rgb);
    return c.z * mix( vec3(1.0), rgb, c.y);
  }
  
  vec3 domain(vec2 z){
    return vec3(hsb2rgb(vec3(atan(z.y,z.x)/TAU,1.,1.)));
  }
  vec3 colour(vec2 z) {
      return domain(z);
  }
  // These awesome complex Math functions curtesy of 
  // https://github.com/mkovacs/reim/blob/master/reim.glsl
  vec2 cCis(float r);
  vec2 cLog(vec2 c); // principal value
  vec2 cInv(vec2 c);
  float cArg(vec2 c);
  float cAbs(vec2 c);
  
  vec2 cMul(vec2 a, vec2 b);
  vec2 cDiv(vec2 a, vec2 b);

  vec2 cCis(float r)
  {
    return vec2( cos(r), sin(r) );
  }
  vec2 cExp(vec2 c)
  {
    return exp(c.x) * cCis(c.y);
  }
  vec2 cConj(vec2 c)
  {
    return vec2(c.x, -c.y);
  }
  vec2 cInv(vec2 c)
  {
    return cConj(c) / dot(c, c);
  }
  vec2 cLog(vec2 c)
  {
    return vec2( log( cAbs(c) ), cArg(c) );
  }
  float cArg(vec2 c)
  {
    return atan(c.y, c.x);
  }
  float cAbs(vec2 c)
  {
    return length(c);
  }
  vec2 cMul(vec2 a, vec2 b)
  {
    return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x);
  }
  vec2 cDiv(vec2 a, vec2 b)
  {
    return cMul(a, cInv(b));
  }
  
  // float r1 = 0.1;
  float r2 = 0.47;
  
  vec2 Droste(vec2 uv, inout float id) {
    
    float l = 1. - length(uv) * .5;
    
    // float sint = sin(u_time*.001)*.5 + .5;
    float sint = .025;
    // sint = sin(u_time*.5)*.08;
    float r1 = 0.1 + sint;
    
    // 5. Take the tiled strips back to ordinary space.
    uv = cLog(uv); 
    uv.x -= u_time;
    // 4. Scale and rotate the strips
    float scale = log(r2/r1);
    float angle = atan(scale/(2.0*PI));
    uv = cDiv(uv, cExp(vec2(0,angle))*cos(angle)); 
    // 3. this simulates zooming in the tile
    // uv -= u_time * 1.5;
    uv.y -= u_time*0.5;
    // uv.x -= u_time * .001;
    // 2. Tile the strips
    uv.x = mod(uv.x,log(r2/r1));
    id = smoothstep(.15, .........完整代码请登录后点击上方下载按钮下载查看

网友评论0