canvas实现有形状的perlin噪波纹理动画效果代码

代码语言:html

所属分类:动画

代码描述:canvas实现有形状的perlin噪波纹理动画效果代码

代码标签: canvas 形状 perlin 噪波 纹理 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">
  

  
  
  
  
<style>
*{
  padding:0;
  margin:0;
  boz-sizing:border-box;
}

#canvas{
  background:#021636;


}
</style>




</head>

<body>
  <canvas id="canvas"></canvas>

  
      <script>
/*
 * A speed-improved perlin and simplex noise algorithms for 2D.
 *
 * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 * Converted to Javascript by Joseph Gentle.
 *
 * Version 2012-03-09
 *
 * This code was placed in the public domain by its original author,
 * Stefan Gustavson. You may use it as you see fit, but
 * attribution is appreciated.
 *
 */

(function (global) {
  var module = global.noise = {};

  function Grad(x, y, z) {
    this.x = x;this.y = y;this.z = z;
  }

  Grad.prototype.dot2 = function (x, y) {
    return this.x * x + this.y * y;
  };

  Grad.prototype.dot3 = function (x, y, z) {
    return this.x * x + this.y * y + this.z * z;
  };

  var grad3 = [new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
  new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
  new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)];

  var p = [151, 160, 137, 91, 90, 15,
  131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
  190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
  88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
  77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
  102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
  135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
  5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
  223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
  129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
  251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
  49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
  138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180];
  // To remove the need for index wrapping, double the permutation table length
  var perm = new Array(512);
  var gradP = new Array(512);

  // This isn't a very good seeding function, but it works ok. It supports 2^16
  // different seed values. Write something better if you need more seeds.
  module.seed = function (seed) {
    if (seed > 0 && seed < 1) {
      // Scale the seed out
      seed *= 65536;
    }

    seed = Math.floor(seed);
    if (seed < 256) {
      seed |= seed << 8;
    }

    for (var i = 0; i < 256; i++) {
      var v;
      if (i & 1) {
        v = p[i] ^ seed & 255;
      } else {
        v = p[i] ^ seed >> 8 & 255;
      }

      perm[i] = perm[i + 256] = v;
      gradP[i] = gradP[i + 256] = grad3[v % 12];
    }
  };

  module.seed(0);

  /*
  for(var i=0; i<256; i++) {
    perm[i] = perm[i + 256] = p[i];
    gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
  }*/

  // Skewing and unskewing factors for 2, 3, and 4 dimensions
  var F2 = 0.5 * (Math.sqrt(3) - 1);
  var G2 = (3 - Math.sqrt(3)) / 6;

  var F3 = 1 / 3;
  var G3 = 1 / 6;

  // 2D simplex noise
  module.simplex2 = function (xin, yin) {
    var n0, n1, n2; // Noise contributions from the three corners
    // Skew the input space to determine which simplex cell we're in
    var s = (xin + yin) * F2; // Hairy factor for 2D
    var i = Math.floor(xin + s);
    var j = Math.floor(yin + s);
    var t = (i + j) * G2;
    var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
    var y0 = yin - j + t;
    // For the 2D case, the simplex shape is an equilateral triangle.
    // Determine which simplex we are in.
    var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
    if (x0 > y0) {// lower triangle, XY order: (0,0)->(1,0)->(1,1)
      i1 = 1;j1 = 0;
    } else {// upper triangle, YX order: (0,0)->(0,1)->(1,1)
      i1 = 0;j1 = 1;
    }
    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
    // c = (3-sqrt(3))/6
    var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
    var y1 = y0 - j1 + G2;
    var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
    var y2 = y0 - 1 + 2 * G2;
    // Work out the hashed gradient indices of the three simplex corners
    i &= 255;
    j &= 255;
    var gi0 = gradP[i + perm[j]];
    var gi1 = gradP[i + i1 + perm[j + j1]];
    var gi2 = gradP[i + 1 + perm[j + 1]];
    // Calculate the contribution from the three corners
    var t0 = 0.5 - x0 * x0 - y0 * y0;
    if (t0 < 0) {
      n0 = 0;
    } else {
      t0 *= t0;
      n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
    }
    var t1 = 0.5 - x1 * x1 - y1 * y1;
    if (t1 < 0) {
      n1 = 0;
    } else {
      t1 *= t1;
      n1 = t1 * t1 * gi1.dot2(x1, y1);
    }
    var t2 = 0.5 - x2 * x2 - y2 * y2;
    if (t2 < 0) {
      n2 = 0;
    } else {
      t2 *= t2;
      n2 = t2 * t2 * gi2.dot2(x2, y2);
    }
    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 70 * (n0 + n1 + n2);
  };

  // 3D simplex noise
  module.simplex3 = function (xin, yin, zin) {
    var n0, n1, n2, n3; // Noise contributions from the four corners

    // Skew the input space to determine which simplex cell we're in
    var s = (xin + yin + zin) * F3; // Hairy factor for 2D
    var i = Math.floor(xin + s);
 .........完整代码请登录后点击上方下载按钮下载查看

网友评论0