webgl实现canvas三维纸张椎体旋转效果代码
代码语言:html
所属分类:三维
代码描述:webgl实现canvas三维纸张椎体旋转效果代码
代码标签: webgl canvas 三维 纸张 椎体 旋转
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <style> * { box-sizing: border-box; } html, body { margin: 0; min-height: 100vh; overflow: hidden; background: repeating-radial-gradient( circle at center, #444 0 10%, #111 10% 20% ); touch-action: none; } canvas { width: 100%; height: auto; object-fit: contain; } </style> </head> <body> <canvas id="canvas"></canvas> <script > /********* * made by Matthias Hurrle (@atzedent) */ /** @type {HTMLCanvasElement} */ const canvas = window.canvas; const gl = canvas.getContext("webgl2"); const dpr = Math.max(1, .5 * window.devicePixelRatio); /** @type {Map<string,PointerEvent>} */ const touches = new Map(); const vertexSource = `#version 300 es #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif in vec2 position; void main(void) { gl_Position = vec4(position, 0., 1.); } `; const fragmentSource = `#version 300 es /********* * made by Matthias Hurrle (@atzedent) */ #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif uniform float time; uniform vec2 resolution; uniform vec2 touch; uniform int pointerCount; out vec4 fragColor; #define T (mod(time+5., 200.)) #define S smoothstep #define mouse (touch/resolution) #define rot(a) mat2(cos(a),-sin(a),sin(a),cos(a)) float oct(vec3 p, float s) { p = abs(p); return (p.x+p.y+p.z-s)*(1./sqrt(3.)); } float mat=1.; float map(vec3 p) { vec3 q = p; q.xz *= rot(-T*.5); q.yz *= rot(T*.25); float d = 1e5, oc0=oct(q, 1.75), flr = p.y+3.+sin(T+p.x+sin(p.xz*rot(.5678)).x)*.5; d=min(d,oc0); d=min(d,flr); if(d==oc0) mat=.0; else mat=1.; return d; } vec3 norm(vec3 p) { vec2 e=vec2(1e-2,0); float d=map(p); vec3 n=d-vec3( map(p-e.xyy), map(p-e.yxy), map(p-e.yyx) ); return normalize(n); } float getshadow(vec3 ro, vec3 rd) { const float steps=10., k=64.; float shade=1.; for(float i=1e-3;i<steps;) { float d=map(ro+rd*i); if(d<1e-3) { shade=5e-3; break; } shade=min(shade, k*d/i); i+=d; } return shade; } float getao(vec3 p, vec3 n, float dist) { return clamp(map(p+n*dist)/dist,.0,1.); } void cam(inout vec3 p) { if(pointerCount>0) { p.yz*=rot(-clamp(mouse.y,-1.,.5)*acos(-1.)+acos(.0)); p.xz*=rot(-mouse.x*acos(-1.)*2.); } else { p.yz*=rot(sin(T*.5)*.25+.25); p.xz*=rot(T*.25); p.xy*=rot(sin(T*.5)*.25+.25); } } void main(void) { vec2 uv = ( gl_FragCoord.xy-.5*resolution.xy )/min(resolution.x,resolution.y); vec3 col = vec3(0), ro=vec3(0,0,2.*exp(-cos(T*.25))-10.), rd=normalize(vec3(uv,1)); cam(ro); cam(rd); vec3 p=ro, l=normalize(vec3(1,2,3)); const float steps=100.,maxd=20.; float i=.0, dd=.0, edge=.0; bool near=false; for(;i<steps;i++) { float d=map(p)*.5; if(d<1e-3) break; if(near && d>3e-2) { edge=1.; break; } if(d<2e-2) { near=true; } .........完整代码请登录后点击上方下载按钮下载查看
网友评论0