canvas实现立体音调围成圆球旋转牵线跟踪弹奏音乐效果代码
代码语言:html
所属分类:动画
代码描述:canvas实现立体音调围成圆球旋转牵线跟踪弹奏音乐效果代码,点击开始弹奏音乐。
代码标签: canvas 立体 音调 围成 圆球 旋转 牵线 跟踪 弹奏 音乐
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en" > <head> <meta charset="UTF-8"> <style> body,html{ background: #000; margin: 0; height: 100vh; overflow: hidden; } #c{ background:#000; position: absolute; left: 50%; top: 50%; transform: translate(-50%, -50%); } </style> </head> <body > <canvas id=c> <script > c = document.querySelector('#c') c.width = 1920 c.height = 1080 x = c.getContext('2d') C = Math.cos S = Math.sin t = 0 T = Math.tan rsz=window.onresize=()=>{ setTimeout(()=>{ if(document.body.clientWidth > document.body.clientHeight*1.77777778){ c.style.height = '100vh' setTimeout(()=>c.style.width = c.clientHeight*1.77777778+'px',0) }else{ c.style.width = '100vw' setTimeout(()=>c.style.height = c.clientWidth/1.77777778 + 'px',0) } },0) } rsz() async function Draw(){ if(!t){ R=(Rl,Pt,Yw,m)=>{ M=Math A=M.atan2 H=M.hypot X=S(p=A(X,Z)+Yw)*(d=H(X,Z)) Z=C(p)*d Y=S(p=A(Y,Z)+Pt)*(d=H(Y,Z)) Z=C(p)*d X=S(p=A(X,Y)+Rl)*(d=H(X,Y)) Y=C(p)*d if(m){ X+=oX Y+=oY Z+=oZ } } Q=()=>[c.width/2+X/Z*700,c.height/2+Y/Z*700] I=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 Rn = Math.random async function loadOBJ(url, scale, tx, ty, tz, rl, pt, yw) { let res await fetch(url, res => res).then(data=>data.text()).then(data=>{ a=[] data.split("\nv ").map(v=>{ a=[...a, v.split("\n")[0]] }) a=a.filter((v,i)=>i).map(v=>[...v.split(' ').map(n=>(+n.replace("\n", '')))]) ax=ay=az=0 a.map(v=>{ v[1]*=-1 ax+=v[0] ay+=v[1] az+=v[2] }) ax/=a.length ay/=a.length az/=a.length a.map(v=>{ X=(v[0]-ax)*scale Y=(v[1]-ay)*scale Z=(v[2]-az)*scale R2(rl,pt,yw,0) v[0]=X v[1]=Y v[2]=Z }) maxY=-6e6 a.map(v=>{ if(v[1]>maxY)maxY=v[1] }) a.map(v=>{ v[1]-=maxY-oY v[0]+=tx v[1]+=ty v[2]+=tz }) b=[] data.split("\nf ").map(v=>{ b=[...b, v.split("\n")[0]] }) b.shift() b=b.map(v=>v.split(' ')) b=b.map(v=>{ v=v.map(q=>{ return +q.split('/')[0] }) v=v.filter(q=>q) return v }) res=[] b.map(v=>{ e=[] v.map(q=>{ e=[...e, a[q-1]] }) e = e.filter(q=>q) res=[...res, e] }) }) return res } geoSphere = (mx, my, mz, iBc, size) => { let collapse=0 let B=Array(iBc).fill().map(v=>{ X = Rn()-.5 Y = Rn()-.5 Z = Rn()-.5 return [X,Y,Z] }) for(let m=150;m--;){ B.map((v,i)=>{ X = v[0] Y = v[1] Z = v[2] B.map((q,j)=>{ if(j!=i){ X2=q[0] Y2=q[1] Z2=q[2] d=1+(Math.hypot(X-X2,Y-Y2,Z-Z2)*(3+iBc/40)*3)**4 X+=(X-X2)*1e3/d Y+=(Y-Y2)*1e3/d Z+=(Z-Z2)*1e3/d } }) d=Math.hypot(X,Y,Z) v[0]=X/d v[1]=Y/d v[2]=Z/d if(collapse){ d=25+Math.hypot(X,Y,Z) v[0]=(X-X/d)/1.1 v[1]=(Y-Y/d)/1.1 v[2]=(Z-Z/d)/1.1 } }) } mind = 6e6 B.map((v,i)=>{ X1 = v[0] Y1 = v[1] Z1 = v[2] B.map((q,j)=>{ X2 = q[0] Y2 = q[1] Z2 = q[2] if(i!=j){ d = Math.hypot(a=X1-X2, b=Y1-Y2, e=Z1-Z2) if(d<mind) mind = d } }) }) a = [] B.map((v,i)=>{ X1 = v[0] Y1 = v[1] Z1 = v[2] B.map((q,j)=>{ X2 = q[0] Y2 = q[1] Z2 = q[2] if(i!=j){ d = Math.hypot(X1-X2, Y1-Y2, Z1-Z2) if(d<mind*2){ if(!a.filter(q=>q[0]==X2&&q[1]==Y2&&q[2]==Z2&&q[3]==X1&&q[4]==Y1&&q[5]==Z1).length) a = [...a, [X1*size,Y1*size,Z1*size,X2*size,Y2*size,Z2*size]] } } }) }) B.map(v=>{ v[0]*=size v[1]*=size v[2]*=size v[0]+=mx v[1]+=my v[2]+=mz }) return [mx, my, mz, size, B, a] } lineFaceI = (X1, Y1, Z1, X2, Y2, Z2, facet, autoFlipNormals=false, showNormals=false) => { let X_, Y_, Z_, d, m, l_,K,J,L,p let I_=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 let Q_=()=>[c.width/2+X_/Z_*600,c.height/2+Y_/Z_*600] let R_ = (Rl,Pt,Yw,m)=>{ let M=Math, A=M.atan2, H=M.hypot X_=S(p=A(X_,Y_)+Rl)*(d=H(X_,Y_)),Y_=C(p)*d,X_=S(p=A(X_,Z_)+Yw)*(d=H(X_,Z_)),Z_=C(p)*d,Y_=S(p=A(Y_,Z_)+Pt)*(d=H(Y_,Z_)),Z_=C(p)*d if(m){ X_+=oX,Y_+=oY,Z_+=oZ } } let rotSwitch = m =>{ switch(m){ case 0: R_(0,0,Math.PI/2); break case 1: R_(0,Math.PI/2,0); break case 2: R_(Math.PI/2,0,Math.PI/2); break } } let ax = 0, ay = 0, az = 0 facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] }) ax /= facet.length, ay /= facet.length, az /= facet.length let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2] let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2] let crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1] d = Math.hypot(...crs)+.001 let nls = 1 //normal line length crs = crs.map(q=>q/d*nls) let X1_ = ax, Y1_ = ay, Z1_ = az let flip = 1 if(autoFlipNormals){ let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1) let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99)) flip = d2_>d1_?-1:1 } let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip) if(showNormals){ x.beginPath() X_ = X1_, Y_ = Y1_, Z_ = Z1_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) X_ = X2_, Y_ = Y2_, Z_ = Z2_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) x.lineWidth = 5 x.strokeStyle='#f004' x.stroke() } let p1_ = Math.atan2(X2_-X1_,Z2_-Z1_) let p2_ = -(Math.acos((Y2_-Y1_)/(Math.hypot(X2_-X1_,Y2_-Y1_,Z2_-Z1_)+.001))+Math.PI/2) let isc = false, iscs = [false,false,false] X_ = X1, Y_ = Y1, Z_ = Z1 R_(0,-p2_,-p1_) let rx_ = X_, ry_ = Y_, rz_ = Z_ for(let m=3;m--;){ if(isc === false){ X_ = rx_, Y_ = ry_, Z_ = rz_ rotSwitch(m) X1_ = X_, Y1_ = Y_, Z1_ = Z_ = 5, X_ = X2, Y_ = Y2, Z_ = Z2 R_(0,-p2_,-p1_) rotSwitch(m) X2_ = X_, Y2_ = Y_, Z2_ = Z_ facet.map((q_,j_)=>{ if(isc === false){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X3_=X_, Y3_=Y_, Z3_=Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(l_=I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) iscs[m] = l_ } }) } } if(iscs.filter(v=>v!==false).length==3){ let iscx = iscs[1][0], iscy = iscs[0][1], iscz = iscs[0][0] let pointInPoly = true ax=0, ay=0, az=0 facet.map((q_, j_)=>{ ax+=q_[0], ay+=q_[1], az+=q_[2] }) ax/=facet.length, ay/=facet.length, az/=facet.length X_ = ax, Y_ = ay, Z_ = az R_(0,-p2_,-p1_) X1_ = X_, Y1_ = Y_, Z1_ = Z_ X2_ = iscx, Y2_ = iscy, Z2_ = iscz facet.map((q_,j_)=>{ if(pointInPoly){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X3_ = X_, Y3_ = Y_, Z3_ = Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) pointInPoly = false } }) if(pointInPoly){ X_ = iscx, Y_ = iscy, Z_ = iscz R_(0,p2_,0) R_(0,0,p1_) isc = [[X_,Y_,Z_], [crs[0],crs[1],crs[2]]] } } return isc } Cylinder = (rw,cl,ls1,ls2) => { let a = [] for(let i=rw;i--;){ let b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } //a = [...a, b] for(let j=cl;j--;){ b = [] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] a = [...a, b] } } b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = ls2/2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } //a = [...a, b] return a } Tetrahedron = size => { ret = [] a = [] let h = size/1.4142/1.25 for(i=3;i--;){ X = S(p=Math.PI*2/3*i) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] } ret = [...ret, a] for(j=3;j--;){ a = [] X = 0 Y = 0 Z = -h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*j) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] ret = [...ret, a] } ax=ay=az=ct=0 ret.map(v=>{ v.map(q=>{ ax+=q[0] ay+=q[1] az+=q[2] ct++ }) }) ax/=ct ay/=ct az/=ct ret.map(v=>{ v.map(q=>{ q[0]-=ax q[1]-=ay q[2]-=az }) }) return ret } Cube = size => { for(CB=[],j=6;j--;CB=[...CB,b])for(b=[],i=4;i--;)b=[...b,[(a=[S(p=Math.PI*2/4*i+Math.PI/4),C(p),2**.5/2])[j%3]*(l=j<3?size/1.5:-size/1.5),a[(j+1)%3]*l,a[(j+2)%3]*l]] return CB } Octahedron = size => { ret = [] let h = size/1.25 for(j=8;j--;){ a = [] X = 0 Y = 0 Z = h * (j<4?-1:1) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*j) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] ret = [...ret, a] } return ret } Dodecahedron = size => { ret = [] a = [] mind = -6e6 for(i=5;i--;){ X=S(p=Math.PI*2/5*i + Math.PI/5) Y=C(p) Z=0 if(Y>mind) mind=Y a = [...a, [X,Y,Z]] } a.map(v=>{ X = v[0] Y = v[1]-=mind Z = v[2] R(0, .553573, 0) v[0] = X v[1] = Y v[2] = Z }) b = JSON.parse(JSON.stringify(a)) b.map(v=>{ v[1] *= -1 }) ret = [...ret, a, b] mind = -6e6 ret.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] if(Z>mind)mind = Z }) }) d1=Math.hypot(ret[0][0][0]-ret[0][1][0],ret[0][0][1]-ret[0][1][1],ret[0][0][2]-ret[0][1][2]) ret.map(v=>{ v.map(q=>{ q[2]-=mind+d1/2 }) }) b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ q[2]*=-1 }) }) ret = [...ret, ...b] b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(0,Math.PI/2,0) q[0] = X q[1] = Y q[2] = Z }) }) e = JSON.parse(JSON.stringify(ret)) e.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(Math.PI/2,0,0) q[0] = X q[1] = Y q[2] = Z }) }) ret = [...ret, ...b, ...e] ret.map(v=>{ v.map(q=>{ q[0] *= size/2 q[1] *= size/2 q[2] *= size/2 }) }) return ret } Icosahedron = size => { ret = [] B = [ [[0,3],[1,0],[2,2]], [[0,3],[1,0],[1,3]], [[0,3],[2,3],[1,3]], [[0,2],[2,1],[1,0]], [[0,2],[1,3],[1,0]], [[0,2],[1,3],[2,0]], [[0,3],[2,2],[0,0]], [[1,0],[2,2],[2,1]], [[1,1],[2,2],[2,1]], [[1,1],[2,2],[0,0]], [[1,1],[2,1],[0,1]], [[0,2],[2,1],[0,1]], [[2,0],[1,2],[2,3]], [[0,0],[0,3],[2,3]], [[1,3],[2,0],[2,3]], [[2,3],[0,0],[1,2]], [[1,2],[2,0],[0,1]], [[0,0],[1,2],[1,1]], [[0,1],[1,2],[1,1]], [[0,2],[2,0],[0,1]], ] for(p=[1,1],i=38;i--;)p=[...p,p[l=p.length-1]+p[l-1]] phi = p[l]/p[l-1] a = [ [-phi,-1,0], [phi,-1,0], [phi,1,0], [-phi,1,0], ] for(j=3;j--;ret=[...ret, b])for(b=[],i=4;i--;) b = [...b, [a[i][j],a[i][(j+1)%3],a[i][(j+2)%3]]] ret.map(v=>{ v.map(q=>{ q[0]*=size/2.25 q[1]*=size/2.25 q[2]*=size/2.25 }) }) cp = JSON.parse(JSON.stringify(ret)) out=[] a = [] B.map(v=>{ idx1a = v[0][0] idx2a = v[1][0] idx3a = v[2][0] idx1b = v[0][1] idx2b = v[1][1] idx3b = v[2][1] a = [...a, [cp[idx1a][idx1b],cp[idx2a][idx2b],cp[idx3a][idx3b]]] }) out = [...out, ...a] return out } stroke = (scol, fcol, lwo=1, od=true) => { if(scol){ x.closePath() if(od) x.globalAlpha = .2 x.strokeStyle = scol x.lineWidth = Math.min(100,100*lwo/Z) if(od) x.stroke() x.lineWidth /= 4 x.globalAlpha = 1 x.stroke() } if(fcol){ x.fillStyle = fcol x.fill() } } subbed = (subs, size, sphereize, shape) => { for(let m=subs; m--;){ base = shape shape = [] base.map(v=>{ l = 0 X1 = v[l][0] Y1 = v[l][1] Z1 = v[l][2] l = 1 X2 = v[l][0] Y2 = v[l][1] Z2 = v[l][2] l = 2 X3 = v[l][0] Y3 = v[l][1] Z3 = v[l][2] if(v.length > 3){ l = 3 X4 = v[l][0] Y4 = v[l][1] Z4 = v[l][2] if(v.length > 4){ l = 4 X5 = v[l][0] Y5 = v[l][1] Z5 = v[l][2] } } mx1 = (X1+X2)/2 my1 = (Y1+Y2)/2 mz1 = (Z1+Z2)/2 mx2 = (X2+X3)/2 my2 = (Y2+Y3)/2 mz2 = (Z2+Z3)/2 a = [] switch(v.length){ case 3: mx3 = (X3+X1)/2 my3 = (Y3+Y1)/2 mz3 = (Z3+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 4: mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X1)/2 my4 = (Y4+Y1)/2 mz4 = (Z4+Z1)/2 cx = (X1+X2+X3+X4)/4 cy = (Y1+Y2+Y3+Y4)/4 cz = (Z1+Z2+Z3+Z4)/4 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 5: cx = (X1+X2+X3+X4+X5)/5 cy = (Y1+Y2+Y3+Y4+Y5)/5 cz = (Z1+Z2+Z3+Z4+Z5)/5 mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X5)/2 my4 = (Y4+Y5)/2 mz4 = (Z4+Z5)/2 mx5 = (X5+X1)/2 my5 = (Y5+Y1)/2 mz5 = (Z5+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] break } }) } if(sphereize){ ip1 = sphereize ip2 = 1-sphereize shape = shape.map(v=>{ v = v.map(q=>{ X = q[0] Y = q[1] Z = q[2] d = Math.hypot(X,Y,Z) X /= d Y /= d Z /= d X *= size*.75*ip1 + d*ip2 Y *= size*.75*ip1 + d*ip2 Z *= size*.75*ip1 + d*ip2 return [X,Y,Z] }) return v }) } return shape } subDividedIcosahedron = (subs, size, sphereize = 0) => subbed(subs, size, sphereize, Icosahedron(size)) subDividedTetrahedron = (subs, size, sphereize = 0) => subbed(subs, size, sphereize, Tetrahedron(size)) subDividedOctahedron = (subs, size, sphereize = 0) => subbed(subs, size, sphereize, Octahedron(size)) subDividedCube = (subs, size, sphereize = 0) => subbed(subs, size, sphereize, Cube(size)) subDividedDodecahedron = (subs, size, sphereize = 0) => subbed(subs, size, sphereize, Dodecahedron(size)) .........完整代码请登录后点击上方下载按钮下载查看
网友评论0