canvas实现立体音调围成圆球旋转牵线跟踪弹奏音乐效果代码

代码语言:html

所属分类:动画

代码描述:canvas实现立体音调围成圆球旋转牵线跟踪弹奏音乐效果代码,点击开始弹奏音乐。

代码标签: canvas 立体 音调 围成 圆球 旋转 牵线 跟踪 弹奏 音乐

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>
  <meta charset="UTF-8">
  



  
  
  
<style>
body,html{
  background: #000;
  margin: 0;
  height: 100vh;
  overflow: hidden;
}
#c{
  background:#000;
  position: absolute;
  left: 50%;
  top: 50%;
  transform: translate(-50%, -50%);
}
</style>

  
  
  
</head>

<body >
  <canvas id=c>


  
      <script  >
c = document.querySelector('#c')
c.width = 1920
c.height = 1080
x = c.getContext('2d')
C = Math.cos
S = Math.sin
t = 0
T = Math.tan

rsz=window.onresize=()=>{
  setTimeout(()=>{
    if(document.body.clientWidth > document.body.clientHeight*1.77777778){
      c.style.height = '100vh'
      setTimeout(()=>c.style.width = c.clientHeight*1.77777778+'px',0)
    }else{
      c.style.width = '100vw'
      setTimeout(()=>c.style.height =     c.clientWidth/1.77777778 + 'px',0)
    }
  },0)
}
rsz()

async function Draw(){
  
  if(!t){
    R=(Rl,Pt,Yw,m)=>{
      M=Math
      A=M.atan2
      H=M.hypot
      X=S(p=A(X,Z)+Yw)*(d=H(X,Z))
      Z=C(p)*d
      Y=S(p=A(Y,Z)+Pt)*(d=H(Y,Z))
      Z=C(p)*d
      X=S(p=A(X,Y)+Rl)*(d=H(X,Y))
      Y=C(p)*d
      if(m){
        X+=oX
        Y+=oY
        Z+=oZ
      }
    }
    Q=()=>[c.width/2+X/Z*700,c.height/2+Y/Z*700]
    I=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0
    
    Rn = Math.random
    
    async function loadOBJ(url, scale, tx, ty, tz, rl, pt, yw) {
      let res
      await fetch(url, res => res).then(data=>data.text()).then(data=>{
        a=[]
        data.split("\nv ").map(v=>{
          a=[...a, v.split("\n")[0]]
        })
        a=a.filter((v,i)=>i).map(v=>[...v.split(' ').map(n=>(+n.replace("\n", '')))])
        ax=ay=az=0
        a.map(v=>{
          v[1]*=-1
          ax+=v[0]
          ay+=v[1]
          az+=v[2]
        })
        ax/=a.length
        ay/=a.length
        az/=a.length
        a.map(v=>{
          X=(v[0]-ax)*scale
          Y=(v[1]-ay)*scale
          Z=(v[2]-az)*scale
          R2(rl,pt,yw,0)
          v[0]=X
          v[1]=Y
          v[2]=Z
        })
        maxY=-6e6
        a.map(v=>{
          if(v[1]>maxY)maxY=v[1]
        })
        a.map(v=>{
          v[1]-=maxY-oY
          v[0]+=tx
          v[1]+=ty
          v[2]+=tz
        })

        b=[]
        data.split("\nf ").map(v=>{
          b=[...b, v.split("\n")[0]]
        })
        b.shift()
        b=b.map(v=>v.split(' '))
        b=b.map(v=>{
          v=v.map(q=>{
            return +q.split('/')[0]
          })
          v=v.filter(q=>q)
          return v
        })
        
        res=[]
        b.map(v=>{
          e=[]
          v.map(q=>{
            e=[...e, a[q-1]]
          })
          e = e.filter(q=>q)
          res=[...res, e]
        })
      })
      return res
    }

    geoSphere = (mx, my, mz, iBc, size) => {
      let collapse=0
      let B=Array(iBc).fill().map(v=>{
        X = Rn()-.5
        Y = Rn()-.5
        Z = Rn()-.5
        return  [X,Y,Z]
      })
      for(let m=150;m--;){
        B.map((v,i)=>{
          X = v[0]
          Y = v[1]
          Z = v[2]
          B.map((q,j)=>{
            if(j!=i){
              X2=q[0]
              Y2=q[1]
              Z2=q[2]
              d=1+(Math.hypot(X-X2,Y-Y2,Z-Z2)*(3+iBc/40)*3)**4
              X+=(X-X2)*1e3/d
              Y+=(Y-Y2)*1e3/d
              Z+=(Z-Z2)*1e3/d
            }
          })
          d=Math.hypot(X,Y,Z)
          v[0]=X/d
          v[1]=Y/d
          v[2]=Z/d
          if(collapse){
            d=25+Math.hypot(X,Y,Z)
            v[0]=(X-X/d)/1.1
            v[1]=(Y-Y/d)/1.1         
            v[2]=(Z-Z/d)/1.1
          }
        })
      }
      mind = 6e6
      B.map((v,i)=>{
        X1 = v[0]
        Y1 = v[1]
        Z1 = v[2]
        B.map((q,j)=>{
          X2 = q[0]
          Y2 = q[1]
          Z2 = q[2]
          if(i!=j){
            d = Math.hypot(a=X1-X2, b=Y1-Y2, e=Z1-Z2)
            if(d<mind) mind = d
          }
        })
      })
      a = []
      B.map((v,i)=>{
        X1 = v[0]
        Y1 = v[1]
        Z1 = v[2]
        B.map((q,j)=>{
          X2 = q[0]
          Y2 = q[1]
          Z2 = q[2]
          if(i!=j){
            d = Math.hypot(X1-X2, Y1-Y2, Z1-Z2)
            if(d<mind*2){
              if(!a.filter(q=>q[0]==X2&&q[1]==Y2&&q[2]==Z2&&q[3]==X1&&q[4]==Y1&&q[5]==Z1).length) a = [...a, [X1*size,Y1*size,Z1*size,X2*size,Y2*size,Z2*size]]
            }
          }
        })
      })
      B.map(v=>{
        v[0]*=size
        v[1]*=size
        v[2]*=size
        v[0]+=mx
        v[1]+=my
        v[2]+=mz
      })
      return [mx, my, mz, size, B, a]
    }

    lineFaceI = (X1, Y1, Z1, X2, Y2, Z2, facet, autoFlipNormals=false, showNormals=false) => {
      let X_, Y_, Z_, d, m, l_,K,J,L,p
      let I_=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0
      let Q_=()=>[c.width/2+X_/Z_*600,c.height/2+Y_/Z_*600]
      let R_ = (Rl,Pt,Yw,m)=>{
        let M=Math, A=M.atan2, H=M.hypot
        X_=S(p=A(X_,Y_)+Rl)*(d=H(X_,Y_)),Y_=C(p)*d,X_=S(p=A(X_,Z_)+Yw)*(d=H(X_,Z_)),Z_=C(p)*d,Y_=S(p=A(Y_,Z_)+Pt)*(d=H(Y_,Z_)),Z_=C(p)*d
        if(m){ X_+=oX,Y_+=oY,Z_+=oZ }
      }
      let rotSwitch = m =>{
        switch(m){
          case 0: R_(0,0,Math.PI/2); break
          case 1: R_(0,Math.PI/2,0); break
          case 2: R_(Math.PI/2,0,Math.PI/2); break
        }        
      }
      let ax = 0, ay = 0, az = 0
      facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] })
      ax /= facet.length, ay /= facet.length, az /= facet.length
      let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2]
      let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2]
      let crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1]
      d = Math.hypot(...crs)+.001
      let nls = 1 //normal line length
      crs = crs.map(q=>q/d*nls)
      let X1_ = ax, Y1_ = ay, Z1_ = az
      let flip = 1
      if(autoFlipNormals){
        let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1)
        let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99))
        flip = d2_>d1_?-1:1
      }
      let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip)
      if(showNormals){
        x.beginPath()
        X_ = X1_, Y_ = Y1_, Z_ = Z1_
        R_(Rl,Pt,Yw,1)
        if(Z_>0) x.lineTo(...Q_())
        X_ = X2_, Y_ = Y2_, Z_ = Z2_
        R_(Rl,Pt,Yw,1)
        if(Z_>0) x.lineTo(...Q_())
        x.lineWidth = 5
        x.strokeStyle='#f004'
        x.stroke()
      }
      
      let p1_ = Math.atan2(X2_-X1_,Z2_-Z1_)
      let p2_ = -(Math.acos((Y2_-Y1_)/(Math.hypot(X2_-X1_,Y2_-Y.........完整代码请登录后点击上方下载按钮下载查看

网友评论0