三维云团魔球变幻效果
代码语言:html
所属分类:三维
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <style> body { margin: 0; } canvas { width: 100%; height: 100% } </style> </head> <body translate="no"> <script type="text/javascript" src="http://repo.bfw.wiki/bfwrepo/js/three-min.js"></script> <script src='http://repo.bfw.wiki/bfwrepo/js/OrbitControls.js'></script> <script > THREE.ShaderChunk.simple_lambert_vertex = ` vec3 vLightFront, vLightBack; #include <beginnormal_vertex> #include <defaultnormal_vertex> #include <begin_vertex> #include <project_vertex> #include <lights_lambert_vertex> ` THREE.ShaderChunk.noise = ` // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : stegu // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // https://github.com/stegu/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } // Permutation polynomial (ring size 289 = 17*17) vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } float permute(float x){ return x - floor(x * (1.0 / 289.0)) * 289.0;; } vec4 taylorInvSqrt(vec4 r){ return 1.79284291400159 - 0.85373472095314 * r; } vec2 fade(vec2 t) { return t*t*t*(t*(t*6.0-15.0)+10.0); } vec3 fade(vec3 t) { return t*t*t*(t*(t*6.0-15.0)+10.0); } // Hashed 2-D gradients with an extra rotation. // (The constant 0.0243902439 is 1/41) vec2 rgrad2(vec2 p, float rot) { #if 0 // Map from a line to a diamond such that a shift maps to a rotation. float u = permute(permute(p.x) + p.y) * 0.0243902439 + rot; // Rotate by shift u = 4.0 * fract(u) - 2.0; // (This vector could be normalized, exactly or approximately.) return vec2(abs(u)-1.0, abs(abs(u+1.0)-2.0)-1.0); #else // For more isotropic gradients, sin/cos can be used instead. float u = permute(permute(p.x) + p.y) * 0.0243902439 + rot; // Rotate by shift u = fract(u) * 6.28318530718; // 2*pi return vec2(cos(u), sin(u)); #endif } float snoise(vec3 v){ const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } // Classic Perlin noise float cnoise(vec2 P){ vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0); vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0); Pi = mod289(Pi); // To avoid truncation effects in permutation vec4 ix = Pi.xzxz; vec4 iy = Pi.yyww; vec4 fx = Pf.xzxz; vec4 fy = Pf.yyww; vec4 i = permute(permute(ix) + iy); vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ; vec4 gy = abs(gx) - 0.5 ; vec4 tx = floor(gx + 0.5); gx = gx - tx; vec2 g00 = vec2(gx.x,gy.x); vec2 g10 = vec2(gx.y,gy.y); vec2 g01 = vec2(gx.z,gy.z); vec2 g11 = vec2(gx.w,gy.w); vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, vec2(fx.x, fy.x)); float n10 = dot(g10, vec2(fx.y, fy.y)); float n01 = dot(g01, vec2(fx.z, fy.z)); float n11 = dot(g11, vec2(fx.w, fy.w)); vec2 fade_xy = fade(Pf.xy); vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); float n_xy = mix(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } // Classic Perlin noise, periodic variant float pnoise(vec2 P, vec2 rep){ vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0); vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0); Pi = mod(Pi, rep.xyxy); // To create noise with explicit period Pi = mod289(Pi); // To avoid truncation effects in permutation vec4 ix = Pi.xzxz; vec4 iy = Pi.yyww; vec4 fx = Pf.xzxz; vec4 fy = Pf.yyww; vec4 i = permute(permute(ix) + iy); vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ; vec4 gy = abs(gx) - 0.5 ; vec4 tx = floor(gx + 0.5); gx = gx - tx; vec2 g00 = vec2(gx.x,gy.x); vec2 g10 = vec2(gx.y,gy.y); vec2 g01 = vec2(gx.z,gy.z); vec2 g11 = vec2(gx.w,gy.w); vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, vec2(fx.x, fy.x)); float n10 = dot(g10, vec2(fx.y, fy.y)); float n01 = dot(g01, vec2(fx.z, fy.z)); float n11 = dot(g11, vec2(fx.w, fy.w)); vec2 fade_xy = fade(Pf.xy); vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); float n_xy = mix(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } // Classic Perlin noise float cnoise(vec3 P) { vec3 Pi0 = floor(P); // Integer part for indexing vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1 Pi0 = mod289(Pi0); Pi1 = mod289(Pi1); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 gx0 = ixy0 * (1.0 / 7.0); vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 * (1.0 / 7.0); vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } // Classic Perlin noise, periodic variant float pnoise(vec3 P, vec3 rep) { vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period Pi0 = mod289(Pi0); Pi1 = mod289(Pi1); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 gx0 = ixy0 * (1.0 / 7.0); vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 * (1.0 / 7.0); vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } float turbulence( vec3 p ) { float w = 100.0; float t = -.5; for (float f = 1.0 ; f <= 10.0 ; f++ ){ float power = pow( 2.0, f ); t += abs( pnoise( vec3( power * p ), vec3( 10.0, 10.0, 10.0 ) ) / power ); } return t; } float turbulence3( vec3 p ) { float w = 100.0; float t = -.5; for (float f = 1.0 ; f <= 3.0 ; f++ ){ float power = pow( 2.0, f ); t += abs( pnoise( vec3( power * p ), vec3( 3.0, 3.0, 3.0 ) ) / power ); } return t; } float turbulence6( vec3 p ) { float w = 100.0; float t = -.5; for (float f = 1.0 ; f <= 6.0 ; f++ ){ float power = pow( 2.0, f ); t += abs( pnoise( vec3( power * p ), vec3( 6.0, 6.0, 6.0 ) ) / power ); } return t; } // // 2-D tiling simplex noise with rotating gradients and analytical derivative. // The first component of the 3-element return vector is the noise value, // and the second and third components are the x and y partial derivatives. // vec3 psrdnoise(vec2 pos, vec2 per, float rot) { // Hack: offset y slightly to hide some rare artifacts pos.y += 0.01; // Skew to hexagonal grid vec2 uv = vec2(pos.x + pos.y*0.5, pos.y); vec2 i0 = floor(uv); vec2 f0 = fract(uv); // Traversal order vec2 i1 = (f0.x > f0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); // Unskewed grid points in (x,y) space vec2 p0 = vec2(i0.x - i0.y * 0.5, i0.y); vec2 p1 = vec2(p0.x + i1.x - i1.y * 0.5, p0.y + i1.y); vec2 p2 = vec2(p0.x + 0.5, p0.y + 1.0); // Integer grid point indices in (u,v) space i1 = i0 + i1; vec2 i2 = i0 + vec2(1.0, 1.0); // Vectors in unskewed (x,y) coordinates from // each of the simplex corners to the evaluation point vec2 d0 = pos - p0; vec2 d1 = pos - p1; vec2 d2 = pos - p2; // Wrap i0, i1 and i2 to the desired period before gradient hashing: // wrap points in (x,y), map to (u,v) vec3 xw = mod(vec3(p0.x, p1.x, p2.x), per.x); vec3 yw = mod(vec3(p0.y, p1.y, p2.y), per.y); vec3 iuw = xw + 0.5 * yw; vec3 ivw = yw; // Create gradients from indices vec2 g0 = rgrad2(vec2(iuw.x, ivw.x), rot); vec2 g1 = rgrad2(vec2(iuw.y, ivw.y), rot); vec2 g2 = rgrad2(vec2(iuw.z, ivw.z), rot); // Gradients dot vectors to corresponding corners // (The derivatives of this are simply the gradients) vec3 w = vec3(dot(g0, d0), dot(g1, d1), dot(g2, d2)); // Radial weights from corners // 0.8 is the square of 2/sqrt(5), the distance from // a grid point to the nearest simplex boundary vec3 t = 0.8 - vec3(dot(d0, d0), dot(d1, d1), dot(d2, d2)); // Partial derivatives for analytical gradient computation vec3 dtdx = -2.0 * vec3(d0.x, d1.x, d2.x); vec3 dtdy = -2.0 * vec3(d0.y, d1.y, d2.y); // Set influence of each surflet to zero outside radius sqrt(0.8) if (t.x < 0.0) { dtdx.x = 0.0; dtdy.x = 0.0; t.x = 0.0; } if (t.y < 0.0) { dtdx.y = 0.0; dtdy.y = 0.0; t.y = 0.0; } if (t.z < 0.0) { dtdx.z = 0.0; dtdy.z = 0.0; t.z = 0.0; } // Fourth power of t (and third power for derivative) vec3 t2 = t * t; vec3 t4 = t2 * t2; vec3 t3 = t2 * t; // Final noise value is: // sum of ((radial weights) times (gradient dot vector from corner)) float n = dot(t4, w); // Final analytical derivative (gradient of a sum of scalar products) vec2 dt0 = vec2(dtdx.x, dtdy.x) * 4.0 * t3.x; vec2 dn0 = t4.x * g0 + dt0 * w.x; vec2 dt1 = vec2(dtdx.y, dtdy.y) * 4.0 * t3.y; vec2 dn1 =.........完整代码请登录后点击上方下载按钮下载查看
网友评论0