threejs+webgl实现三维刺状晶体旋转起伏动画效果代码

代码语言:html

所属分类:三维

代码描述:threejs+webgl实现三维刺状晶体旋转起伏动画效果代码

代码标签: threejs webgl 三维 刺状 晶体 旋转 起伏 动画

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

<!DOCTYPE html>
<html lang="en" >

<head>

  <meta charset="UTF-8">

  
  
  
  
<style>
html,
body {
  margin: 0;
}

.webgl {
  position: fixed;
  left: 0;
  top: 0;
  outline: none;
}
</style>




</head>

<body  >
  <canvas class="webgl"></canvas>

  
      <script type="module">
import * as THREE from "https://cdn.skypack.dev/three@0.133.1/build/three.module";
import { OrbitControls } from "https://cdn.skypack.dev/three@0.133.1/examples/jsm/controls/OrbitControls";

import { EffectComposer } from "https://cdn.skypack.dev/three@0.133.1/examples/jsm/postprocessing/EffectComposer.js";
import { RenderPass } from "https://cdn.skypack.dev/three@0.133.1/examples/jsm/postprocessing/RenderPass.js";
import { UnrealBloomPass } from "https://cdn.skypack.dev/three@0.133.1/examples/jsm/postprocessing/UnrealBloomPass.js";

// var capturer = new CCapture({ format: "webm" });
// capturer.start();

const params = {
  exposure: 0.9,
  bloomStrength: 0.9,
  // bloomThreshold: 0.01,
  bloomRadius: 1.5 };


// Canvas
const canvas = document.querySelector("canvas.webgl");

// Scene
const scene = new THREE.Scene();

// Object
const geometry = new THREE.SphereGeometry(50, 128, 64);

const uniforms = {
  uAmplitude: {
    value: 1.0 },

  uTime: {
    value: 0 },

  uColor: {
    value: new THREE.Color(0xff2200) } };



const shaderMaterial = new THREE.ShaderMaterial({
  uniforms,
  vertexShader: `
            uniform float uTime;

            varying vec2 vUv;
            varying vec3 vNormal;
            varying float vNoise;

            vec3 mod289(vec3 x)
            {
              return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            vec4 mod289(vec4 x)
            {
              return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            vec4 permute(vec4 x)
            {
              return mod289(((x*34.0)+10.0)*x);
            }

            vec4 taylorInvSqrt(vec4 r)
            {
              return 1.79284291400159 - 0.85373472095314 * r;
            }

            vec3 fade(vec3 t) {
              return t*t*t*(t*(t*6.0-15.0)+10.0);
            }

            float pnoise(vec3 P, vec3 rep)
            {
              vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
              vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
              Pi0 = mod289(Pi0);
              Pi1 = mod289(Pi1);
              vec3 Pf0 = fract(P); // Fractional part for interpolation
              vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
              vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
              vec4 iy = vec4(Pi0.yy, Pi1.yy);
              vec4 iz0 = Pi0.zzzz;
              vec4 iz1 = Pi1.zzzz;

              vec4 ixy = permute(permute(ix) + iy);
              vec4 ixy0 = permute(ixy + iz0);
              vec4 ixy1 = permute(ixy + iz1);

              vec4 gx0 = ixy0 * (1.0 / 7.0);
              vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
              gx0 = fract(gx0);
              vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
              vec4 sz0 = step(gz0, vec4(0.0));
              gx0 -= sz0 * (step(0.0, gx0) - 0.5);
              gy0 -= sz0 * (step(0.0, gy0) - 0.5);

              vec4 gx1 = ixy1 * (1.0 / 7.0);
              vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
              gx1 = fract(gx1);
              vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
              vec4 sz1 = step(gz1, vec4(0.0));
              gx1 -= sz1 * (step(0.0, gx1) - 0.5);
              gy1 -= sz1 * (step(0.0, gy1) - 0.5);

              vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
              vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
              vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
              vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
              vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
              vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
              vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
              vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

              vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
              g000 *= norm0.x;
              g010 *= norm0.y;
              g100 *= norm0.z;
              g110 *= norm0.w;
              vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
              g001 *= norm1.x;
              g011 *= norm1.y;
              g101 *= norm1.z;
              g111 *= norm1.w;

              float n000 = dot(g000, Pf0);
              float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
              float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
              float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
              float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
              float n101 = dot(.........完整代码请登录后点击上方下载按钮下载查看

网友评论0