wtc-math+webgl实现三维立体空间向前推进摄像机视角效果代码
代码语言:html
所属分类:三维
代码描述:wtc-math+webgl实现三维立体空间向前推进摄像机视角效果代码
代码标签: wtc-math webgl 三维 立体 空间 摄像机 视角
下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开
<!DOCTYPE html>
<html lang="en" >
<head>
<meta charset="UTF-8">
<style>
body {
background: #666;
margin: 0;
overflow: hidden;
}
canvas {
height: 100vh;
width: 100vw;
touch-action: none;
cursor: pointer;
}
.osc {
left: 0px;
position: fixed;
top: 0px;
}
.button {
position: fixed;
z-index: 10;
right: 0;
bottom: 0;
}
.controls {
position: fixed;
z-index: 10;
left: 0;
bottom: 0;
}
.playpause {
background: #AAB;
padding: 10px;
}
.playpause label {
display: block;
box-sizing: border-box;
width: 0;
height: 20px;
cursor: pointer;
border-color: transparent transparent transparent #202020;
transition: 100ms all ease;
will-change: border-width;
border-style: double;
border-width: 0px 0 0px 20px;
}
.playpause input[type='checkbox'] {
visibility: hidden;
}
.playpause.checked label {
border-style: double;
border-width: 0px 0 0px 20px;
}
.playpause label {
border-style: solid;
border-width: 10px 0 10px 20px;
}
/* } */
</style>
</head>
<body >
<script id="vertexShader_buffer" type="x-shader/x-vertex">attribute vec4 a_position;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
void main() {
gl_Position = a_position;
}
</script>
<script id="fragmentShader_AA" type="x-shader/x-vertex">
precision highp float;
#extension GL_EXT_shader_texture_lod : enable
#extension GL_OES_standard_derivatives : enable
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D b_render;
#define FXAA_REDUCE_MIN (1.0/ 128.0)
#define FXAA_REDUCE_MUL (1.0 / 8.0)
#define FXAA_SPAN_MAX 8.0
void texcoords(vec2 fragCoord, vec2 resolution,
out vec2 v_rgbNW, out vec2 v_rgbNE,
out vec2 v_rgbSW, out vec2 v_rgbSE,
out vec2 v_rgbM) {
vec2 inverseVP = 1.0 / resolution.xy;
v_rgbNW = (fragCoord + vec2(-1.0, -1.0)) * inverseVP;
v_rgbNE = (fragCoord + vec2(1.0, -1.0)) * inverseVP;
v_rgbSW = (fragCoord + vec2(-1.0, 1.0)) * inverseVP;
v_rgbSE = (fragCoord + vec2(1.0, 1.0)) * inverseVP;
v_rgbM = vec2(fragCoord * inverseVP);
}
//optimized version for mobile, where dependent
//texture reads can be a bottleneck
vec4 fxaa(sampler2D tex, vec2 fragCoord, vec2 resolution,
vec2 v_rgbNW, vec2 v_rgbNE,
vec2 v_rgbSW, vec2 v_rgbSE,
vec2 v_rgbM) {
vec4 color;
mediump vec2 inverseVP = vec2(1.0 / resolution.x, 1.0 / resolution.y);
vec3 rgbNW = texture2D(tex, v_rgbNW).xyz;
vec3 rgbNE = texture2D(tex, v_rgbNE).xyz;
vec3 rgbSW = texture2D(tex, v_rgbSW).xyz;
vec3 rgbSE = texture2D(tex, v_rgbSE).xyz;
vec4 texColor = texture2D(tex, v_rgbM);
vec3 rgbM = texColor.xyz;
vec3 luma = vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
mediump vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) *
(0.25 * FXAA_REDUCE_MUL), FXAA_REDUCE_MIN);
float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) * inverseVP;
vec3 rgbA = 0.5 * (
texture2D(tex, fragCoord * inverseVP + dir * (1.0 / 3.0 - 0.5)).xyz +
texture2D(tex, fragCoord * inverseVP + dir * (2.0 / 3.0 - 0.5)).xyz);
vec3 rgbB = rgbA * 0.5 + 0.25 * (
texture2D(tex, fragCoord * inverseVP + dir * -0.5).xyz +
texture2D(tex, fragCoord * inverseVP + dir * 0.5).xyz);
float lumaB = dot(rgbB, luma);
if ((lumaB < lumaMin) || (lumaB > lumaMax))
color = vec4(rgbA, texColor.a);
else
color = vec4(rgbB, texColor.a);
return color;
}
void main() {
vec2 rcpFrame = 1./u_resolution.xy;
vec2 uv2 = gl_FragCoord.xy / u_resolution.xy;
vec3 col;
mediump vec2 v_rgbNW;
mediump vec2 v_rgbNE;
mediump vec2 v_rgbSW;
mediump vec2 v_rgbSE;
mediump vec2 v_rgbM;
texcoords(gl_FragCoord.xy, u_resolution.xy, v_rgbNW, v_rgbNE, v_rgbSW, v_rgbSE, v_rgbM);
col = fxaa( b_render, gl_FragCoord.xy, u_resolution.xy, v_rgbNW, v_rgbNE, v_rgbSW, v_rgbSE, v_rgbM).rgb;
gl_FragColor = vec4( col, 1. );
// vec3 colour = FxaaPixelShader( uv, b_render, rcpFrame);
// gl_FragColor = vec4(colour, 1.);
}
</script>
<script id="fragmentShader_under" type="x-shader/x-vertex">
precision highp float;
precision highp int;
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D u_noise;
uniform float u_fov;
uniform sampler2D b_render;
const float vSize = .4; // this is the voxel size
const int maxIterations = 256;
const int maxIterationsShad = 16;
const float stopThreshold = 0.001;
const float stepScale = .7;
const float eps = 0.005;
const vec3 clipColour = vec3(1.);
const vec3 fogColour = vec3(.0,.1,.3);
const vec3 light1_position = vec3(0, 1., 1.);
const vec3 light1_colour = vec3(.8, .8, .85)*1.5;
const float light1_strength = .9;
const float light1_attenuation = 0.15;
const float fogStrength = 0.03;
struct Surface {
int object_id;
float distance;
vec3 position;
vec3 colour;
float ambient;
float spec;
vec3 norm;
vec3 vPos;
vec3 mask;
vec3 rd;
};
vec3 path(float z) {
// return vec3(
// cos(z*.1 + sin(z*-1.)*.05)*10.+sin(z * .35)*2.,sin(cos(z*.4)*1.5)*2.+cos(z*.143) * 3.,z);
return vec3(0,0,z);
}
float opExtrusion( in vec3 p, in float d, in float h ) {
vec2 w = vec2( d, abs(p.z) - h );
return min(max(w.x,w.y),0.0) + length(max(w,0.0));
}
float sdBox( in vec2 p, in vec2 b ) {
vec2 d = abs(p)-b;
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
}
vec3 hash33(vec3 p3) {
p3 = fract(p3 * vec3(.1031, .1030, .0973));
p3 += dot(p3, p3.yxz+33.33);
return fract((p3.xxy + p3.yxx)*p3.zyx);
}
mat2 rot(float a) {
float s = sin(a);
float c = cos(a);
return mat2(c, -s, s, c);
}
float world(in vec3 p, inout int object_id) {
p.xy -= path(p.z+.2).xy;
p.y -= 2.;
// p.xy *= rot(p.z * .005);
float f = mix(max(p.y, -step(abs(p.x) - 1., 0.)), 100., step(1., float(object_id)));
float l = abs(p.x);
vec3 id = floor(p/2.);
vec3 r = hash33(id);
p = mod(p, 4.) - 2.;
return max(length(p.xz)-r.x*1.*length(p.yz)-r.y*1., -l+.5);
}
float world(in vec3 position) {
int dummy = 0;
return world(position, dummy);
}
float world(in vec3 position, in float voxelSize) {
int dummy = 1;
return world(position*voxelSize, dummy);
}
Surface getSurface(int object_id, float rayDepth, vec3 sp, vec3 norm, vec3 vPos, vec3 mask, vec3 rd) {
return Surface(
object_id,
rayDepth,
sp,
vec3(.5, 0.3, 0.),
.3,
2.,
norm,
vPos,
mask,
rd);
}
vec3 voxelTrace(
vec3 ro,
vec3 rd,
out bool hit,
inout vec3 norm,
out float rayDepth,
out float steps,
out vec2 center,
out vec3 mask,
out vec3 vPos) {
ro /= vSize;
rd /= vSize;
vec3 vRay = floor(ro) + .5;
vec3 inRay = 1./abs(rd);
vec3 signRay = sign(rd);
rd = signRay;
vec3 side = (inRay*(rd * (vRay - ro) + 0.5));
// vec3 mask = vec3(0);
for (int i = 0; i < maxIterations; i++) {
if (world(vRay*vSize)<0.) {
hit = true;
break;
}
mask = (step(side, side.yzx)*(1.-step(side.zxy, side)));
side += (mask*inRay);
vRay = (vRay + mask * rd);
}
norm = normalize((-mask * signRay));
rayDepth = length(ro - vRay);
return vRay;
}
float voxelToDistance(vec3 ro, vec3 rd, vec3 voxelPos) {
ro /= vSize;
rd /= vSize;
vec3 c = (voxelPos-ro - .5*sign(rd))/rd;
return max(max(c.x, c.y), c.z);
}
float voxShadow(vec3 ro, vec3 rd, float end){
ro /= vSize;
rd /= vSize;
float shade = 1.0;
vec3 p = floor(ro) + .5;
vec3 dRd = 1./abs(rd);//1./max(abs(rd), vec3(.0001));
rd = sign(rd);
vec3 side = dRd*(rd * (p - ro) + 0.5);
vec3 mask = vec3(0);
float d = 1.;
for (int i = 0; i < maxIterationsShad; i++) {
d = world(p*vSize);
if (d<0. || length(p-ro)>end) break;
mask = step(side, side.yzx)*(1.-step(side.zxy, side));
side += mask*dRd;
p += mask * rd;
}
// Shadow value. If in shadow, return a dark value.
return shade = step(0., d)*.7 + .3;
}
vec4 voxelAO(vec3 p, vec3 d1, vec3 d2) {
// Take the four side and corner readings... at the correct positions...
// That's the annoying bit that I'm glad others have worked out. :)
vec4 side = vec4(world(p + d1, vSize), world(p + d2, vSize), world(p - d1, vSize), world(p - d2, vSize));
vec4 corner = vec4(world(p + d1 + d2, vSize), world(p - d1 + d2, vSize), world(p - d1 - d2, vSize), world(p + d1 - d2, vSize));
// Quantize them. It's either occluded, or it's not, so to speak.
side = step(side, vec4(0));
corner = step(corner, vec4(0));
// Use the side and corner values to produce a more honed in value... kind of.
return 1. - (side + side.yzwx + max(corner, side*side.yzwx))/3.;
}
float calcVoxAO(vec3 ro, vec3 rd, Surface surfaceObject) {
ro /= vSize;
// rd /= vSize;
vec3 vp = surfaceObject.vPos;
vec3 sp = ro + rd * surfaceObject.distance;
sp = surfaceObject.position/vSize;
vec3 mask = surfaceObject.mask;
// Obtain four AO values at the appropriate quantized positions.
vec4 vAO = voxelAO(vp - sign(rd)*mask, mask.zxy, mask.yzx);
// Use the fractional voxel postion and and the proximate AO values
// to return the interpolated AO value for the surface position.
sp = fract(sp);
vec2 uv = sp.yz*mask.x + sp.zx*mask.y + sp.xy*mask.z;
return mix(mix(vAO.z, vAO.w, uv.x), mix(vAO.y, vAO.x, uv.x), uv.y);
}
vec3 lighting(Surface surface_object, vec3 cam, vec3 lp) {
// start with black
vec3 sceneColour = vec3(0);
// Surface normal
vec3 normal = surface_object.norm;
// Light position
// vec3 lp = cam + vec3(0., -1., 0.);
// lp.xy = path(lp.z).xy + light1_position.xy;
// Light direction
vec3 ld = lp - surface_object.position;
vec3 ldo = (lp - surface_object.position);
// light attenuation
// For brightly lit scenes or global illumination (like sunlit), this can be limited to just normalizing the ld
float len = length( ld );
ld = normalize(ld);
float lightAtten = min( 1.0 / ( light1_attenuation*len ), 1.0 );
// float lightAtten = 1.;
// Scene values, mainly for fog
float sceneLength = length(cam - surface_object.position);
float sceneAttenuation = min( 1. / ( fogStrength * sceneLength * sceneLength ), 1. );
// The surface's light reflection normal
vec3 reflection_normal = reflect(-ld, normal);
// Ambient Occlusion
float ao = 1.;
ao = calcVoxAO(cam, surface_object.rd, surface_object);
// Object surface properties
float diffuse = clamp(dot(normal, ld), 0., 1.);
float specular = clamp(dot( reflection_normal, normalize(cam - surface_object.position) ), 0., 1.);
// specular = .5;
// shadows
float shadows = 1.;
shadows = voxShadow((surface_object.position + surface_object.norm*.001), ld, len);
// Bringing all of the lighting components together
sceneColour += ( surface_object.colour * mix(surface_object.ambient, shadows, diffuse) + specular ) * light1_colour * lightAtten * light1_strength;
// adding fog
sceneColour = clamp(mix( sceneColour, mix(fogColour, vec3(0.), clamp(1.-sceneAttenuation*16., 0., 1.)), 1. - sceneAttenuation ), 0., 1.);
return sceneColour*min(ao+.3, 1.);
}
void main() {
vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
vec2 m = (u_mouse.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
float ptime = u_time * 5.;
// movement
vec3 movement = path(ptime);
// Camera and look-at
vec3 cam = vec3(0,-1.5,-1);
vec3 lookAt = vec3(.2,-1.,0);
// add movement
lookAt += path(ptime+5.);
cam += movement;
vec3 light = lookAt;
lookAt += vec3(m*vec2(20., -20.), 0.);
// Unit vectors
vec3 forward = normalize(lookAt - cam);
vec3 right = normalize(vec3(forward.z, 0., -forward.x));
vec3 up = normalize(cross(forward, right));
// FOV
float FOV = u_fov;
// Ray origin and ray direction
vec3 ro = cam;
vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up);
vec3 pt = path(lookAt.z);
float t = pt.x*.02;
float s = sin(t);
float c = cos(t);
rd.xy *= mat2(c, -s, s, c);
// t = pt.y*.2;
// s = sin(t);
// c = cos(t);
// rd.yz *= mat2(c, -s, s, c);
bool hit = false;
vec3 norm = vec3(0.);
float rayDepth = 0.;
float steps = 0.;
vec2 center = vec2(0);
const float clipNear = 0.;
const float clipFar = 32.;
vec3 mask;
vec3 vPos;
vec3 surfacePos = voxelTrace(ro, rd, hit, norm, rayDepth, steps, center, mask, vPos);
Surface objectSurface = getSurface(1, rayDepth, cam + rd * voxelToDistance(ro, rd, surfacePos), norm, surfacePos, mask, rd);
// gl_FragColor = vec4(vec3(hp/20.), 1.);
// return;
// if(length(center) > 0.) {
// objectSurface.colour = vec3(smoothstep(.9,.92,length(center)));
// objectSurface.colour = vec3(length((center)));
// }
vec3 sceneColour = vec3(0);
if(hit) {
sceneColour = lighting(objectSurface, cam, light);
}
float bright = smoothstep(2.9, 4.,sceneColour.r + sceneColour.g + sceneColour.b);
// sceneColour = vec3(bright);
float additive = smoothstep(12., 1., u_fov);
gl_FragColor = vec4(sceneColour*(additive*.8+.2) + texture2D(b_render, gl_FragCoord.xy/u_resolution.xy).rgb*((1.-additive)*.8+.2), 1.);
// gl_FragColor *= gl_FragColor;
// gl_FragColor *= vec4(vec3(rayDepth*.02), 1.);
}
</script>
<script type="module">
import { Vec2, Vec3, Mat2, Mat3, Mat4, Quat } from '//repo.bfw.wiki/bfwrepo/js/module/wtc-math/wtc-math.1.0.14.js';
console.clear();
const setup = function() {
const dimensions = [window.innerWidth, window.innerHeight];
const canvas = document.createElement('canvas');
document.body.appendChild(canvas);
const renderer = new Renderer(canvas, { width: dimensions[0], height: dimensions[1], alpha: false, premultipliedAlpha: true, preserveDrawingBuffer: true });
const ctx = renderer.ctx;
let drawing = new Float32Array([ -1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0]);
const drawBuffer = new Buffer(ctx, drawing);
const vertexShader_buffer = document.getElementById('vertexShader_buffer').innerText;
const programMain = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_under').innerText, {
clearColour: [.15, .15, 0.25, 1.],
renderType: Program.RENDER_STRIP
});
const programAA = new Program(ctx, vertexShader_buffer, document.getElementById('fragmentShader_AA').innerText, {
renderType: Program.RENDER_STRIP });
const renderBuffer = new FrameBuffer(renderer, 'render', {
width: dimensions[0],
height: dimensions[1],
tiling: Texture.IMAGETYPE_REGU.........完整代码请登录后点击上方下载按钮下载查看
网友评论0